Matching Items (142)
Filtering by

Clear all filters

153039-Thumbnail Image.png
Description
Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L) and capacitor (C) values. A cost effective solution is implemented

Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L) and capacitor (C) values. A cost effective solution is implemented by designing a programmable digital controller. Despite variations in L and C values, the target dynamic response can be achieved by computing and programming the filter coefficients for a particular L and C. Besides, digital controllers have higher immunity to environmental changes such as temperature and aging of components. The second drawback of SCs is their poor efficiency during low load conditions if operated in Pulse Width Modulation (PWM) mode. However, if operated in Pulse Frequency Modulation (PFM) mode, better efficiency numbers can be achieved. A mostly-digital way of detecting PFM mode is implemented. Besides, a slow serial interface to program the chip, and a high speed serial interface to characterize mixed signal blocks as well as to ship data in or out for debug purposes are designed. The chip is taped out in 0.18µm IBM's radiation hardened CMOS process technology. A test board is built with the chip, external power FETs and driver IC. At the time of this writing, PWM operation, PFM detection, transitions between PWM and PFM, and both serial interfaces are validated on the test board.
ContributorsMumma Reddy, Abhiram (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ogras, Umit Y. (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2014
153113-Thumbnail Image.png
Description
As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC

As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC converter is connected to the output of each PV module. The DC optimizer architecture has the advantage of performing maximum power-point tracking (MPPT) at the module level, without the high cost of using an inverter on each module (the "microinverter" architecture). This work details the design of a proposed DC optimizer. The design incorporates a series-input parallel-output topology to implement MPPT at the sub-module level. This topology has some advantages over the more common series-output DC optimizer, including relaxed requirements for the system's inverter. An autonomous control scheme is proposed for the series-connected converters, so that no external control signals are needed for the system to operate, other than sunlight. The DC optimizer in this work is designed with an emphasis on efficiency, and to that end it uses GaN FETs and an active clamp technique to reduce switching and conduction losses. As with any parallel-output converter, phase interleaving is essential to minimize output RMS current losses. This work proposes a novel phase-locked loop (PLL) technique to achieve interleaving among the series-input converters.
ContributorsLuster, Daniel (Author) / Ayyanar, Raja (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2014
153227-Thumbnail Image.png
Description
Negative Bias Temperature Instability (NBTI) is commonly seen in p-channel transistors under negative gate voltages at an elevated temperature. The interface traps, oxide traps and NBTI mechanisms are discussed and their effect on circuit degradation and results are discussed. This thesis focuses on developing a model for simulating impact of

Negative Bias Temperature Instability (NBTI) is commonly seen in p-channel transistors under negative gate voltages at an elevated temperature. The interface traps, oxide traps and NBTI mechanisms are discussed and their effect on circuit degradation and results are discussed. This thesis focuses on developing a model for simulating impact of NBTI effects at circuit level. The model mimics the effects of degradation caused by the defects.

The NBTI model developed in this work is validated and sanity checked by using the simulation data from silvaco and gives excellent results. Furthermore the susceptibility of CMOS circuits such as the CMOS inverter, and a ring oscillator to NBTI is investigated. The results show that the oscillation frequency of a ring oscillator decreases and the SET pulse broadens with the NBTI.
ContributorsPadala, Sudheer (Author) / Barnaby, Hugh (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
155227-Thumbnail Image.png
Description
The market for high speed camera chips, or image sensors, has experienced rapid growth over the past decades owing to its broad application space in security, biomedical equipment, and mobile devices. CMOS (complementary metal-oxide-semiconductor) technology has significantly improved the performance of the high speed camera chip by enabling the monolithic

The market for high speed camera chips, or image sensors, has experienced rapid growth over the past decades owing to its broad application space in security, biomedical equipment, and mobile devices. CMOS (complementary metal-oxide-semiconductor) technology has significantly improved the performance of the high speed camera chip by enabling the monolithic integration of pixel circuits and on-chip analog-to-digital conversion. However, for low light intensity applications, many CMOS image sensors have a sub-optimum dynamic range, particularly in high speed operation. Thus the requirements for a sensor to have a high frame rate and high fill factor is attracting more attention. Another drawback for the high speed camera chip is its high power demands due to its high operating frequency. Therefore, a CMOS image sensor with high frame rate, high fill factor, high voltage range and low power is difficult to realize.

This thesis presents the design of pixel circuit, the pixel array and column readout chain for a high speed camera chip. An integrated PN (positive-negative) junction photodiode and an accompanying ten transistor pixel circuit are implemented using a 0.18 µm CMOS technology. Multiple methods are applied to minimize the subthreshold currents, which is critical for low light detection. A layout sharing technique is used to increase the fill factor to 64.63%. Four programmable gain amplifiers (PGAs) and 10-bit pipeline analog-to-digital converters (ADCs) are added to complete on-chip analog to digital conversion. The simulation results of extracted circuit indicate ENOB (effective number of bits) is greater than 8 bits with FoM (figures of merit) =0.789. The minimum detectable voltage level is determined to be 470μV based on noise analysis. The total power consumption of PGA and ADC is 8.2mW for each conversion. The whole camera chip reaches 10508 frames per second (fps) at full resolution with 3.1mm x 3.4mm area.
ContributorsZhao, Tong (Author) / Barnaby, Hugh (Thesis advisor) / Mikkola, Esko (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2017
155173-Thumbnail Image.png
Description
Presently, hard-switching buck/boost converters are dominantly used for automotive applications. Automotive applications have stringent system requirements for dc-dc converters, such as wide input voltage range and limited EMI noise emission. High switching frequency of the dc-dc converters is much desired in automotive applications for avoiding AM band interference and for

Presently, hard-switching buck/boost converters are dominantly used for automotive applications. Automotive applications have stringent system requirements for dc-dc converters, such as wide input voltage range and limited EMI noise emission. High switching frequency of the dc-dc converters is much desired in automotive applications for avoiding AM band interference and for compact size. However, hard switching buck converter is not suitable at high frequency operation because of its low efficiency. In addition, buck converter has high EMI noise due to its hard-switching. Therefore, soft-switching topologies are considered in this thesis work to improve the performance of the dc-dc converters.

Many soft-switching topologies are reviewed but none of them is well suited for the given automotive applications. Two soft-switching PWM converters are proposed in this work. For low power automotive POL applications, a new active-clamp buck converter is proposed. Comprehensive analysis of this converter is presented. A 2.2 MHz, 25 W active-clamp buck converter prototype with Si MOSFETs was designed and built. The experimental results verify the operation of the converter. For 12 V to 5 V conversion, the Si based prototype achieves a peak efficiency of 89.7%. To further improve the efficiency, GaN FETs are used and an optimized SR turn-off delay is employed. Then, a peak efficiency of 93.22% is achieved. The EMI test result shows significantly improved EMI performance of the proposed active-clamp buck converter. Last, large- and small-signal models of the proposed converter are derived and verified by simulation.

For automotive dual voltage system, a new bidirectional zero-voltage-transition (ZVT) converter with coupled-inductor is proposed in this work. With the coupled-inductor, the current to realize zero-voltage-switching (ZVS) of main switches is much reduced and the core loss is minimized. Detailed analysis and design considerations for the proposed converter are presented. A 1 MHz, 250 W prototype is designed and constructed. The experimental results verify the operation. Peak efficiencies of 93.98% and 92.99% are achieved in buck mode and boost mode, respectively. Significant efficiency improvement is achieved from the efficiency comparison between the hard-switching buck converter and the proposed ZVT converter with coupled-inductor.
ContributorsNan, Chenhao (Author) / Ayyanar, Raja (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Karady, George G. (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2016
155141-Thumbnail Image.png
Description
Switching regulator has several advantages over linear regulator, but the drawback of switching regulator is ripple voltage on output. Previously people use LDO following a buck converter and multi-phase buck converter to reduce the output voltage ripple. However, these two solutions also have obvious drawbacks and limitations.

Switching regulator has several advantages over linear regulator, but the drawback of switching regulator is ripple voltage on output. Previously people use LDO following a buck converter and multi-phase buck converter to reduce the output voltage ripple. However, these two solutions also have obvious drawbacks and limitations.

In this thesis, a novel mixed signal adaptive ripple cancellation technique is presented. The idea is to generate an artificial ripple current with the same amplitude as inductor current ripple but opposite phase that has high linearity tracking behavior. To generate the artificial triangular current, duty cycle information and inductor current ripple amplitude information are needed. By sensing switching node SW, the duty cycle information can be obtained; by using feedback the amplitude of the artificial ripple current can be regulated. The artificial ripple current cancels out the inductor current, and results in a very low ripple output current flowing to load. In top level simulation, 19.3dB ripple rejection can be achieved.
ContributorsYang, Zhe (Author) / Bakkaloglu, Bertan (Thesis advisor) / Seo, Jae-Sun (Committee member) / Lei, Qin (Committee member) / Arizona State University (Publisher)
Created2016
156043-Thumbnail Image.png
Description
Complex electronic systems include multiple power domains and drastically varying dynamic power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to smaller solution size (higher power density) and higher efficiency. As the

Complex electronic systems include multiple power domains and drastically varying dynamic power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to smaller solution size (higher power density) and higher efficiency. As the filter components become smaller in value and size, they are unfortunately also subject to higher process variations and worse degradation profiles jeopardizing stable operation of the power supply. This dissertation presents techniques to track changes in the dynamic loop characteristics of the DC-DC converters without disturbing the normal mode of operation. A digital pseudo-noise (PN) based stimulus is used to excite the DC-DC system at various circuit nodes to calculate the corresponding closed-loop impulse response. The test signal energy is spread over a wide bandwidth and the signal analysis is achieved by correlating the PN input sequence with the disturbed output generated, thereby

accumulating the desired behavior over time. A mixed-signal cross-correlation circuit is used to derive on-chip impulse responses, with smaller memory and lower computational requirement in comparison to a digital correlator approach. Model reference based parametric and non-parametric techniques are discussed to analyze the impulse response results in both time and frequency domain. The proposed techniques can extract open-loop phase margin and closed-loop unity-gain frequency within 5.2% and 4.1% error, respectively, for the load current range of 30-200mA. Converter parameters such as natural frequency (ω_n ), quality factor (Q), and center frequency (ω_c ) can be estimated within 3.6%, 4.7%, and 3.8% error respectively, over load inductance of 4.7-10.3µH, and filter capacitance of 200-400nF. A 5-MHz switching frequency, 5-8.125V input voltage range, voltage-mode controlled DC-DC buck converter is designed for the proposed built-in self-test (BIST) analysis. The converter output voltage range is 3.3-5V and the supported maximum

load current is 450mA. The peak efficiency of the converter is 87.93%. The proposed converter is fabricated on a 0.6µm 6-layer-metal Silicon-On-Insulator (SOI) technology with a die area of 9mm^2 . The area impact due to the system identification blocks including related I/O structures is 3.8% and they consume 530µA quiescent current during operation.
ContributorsBeohar, Navankur (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ozev, Sule (Committee member) / Ayyanar, Raja (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2017
156356-Thumbnail Image.png
Description
This work is concerned with the use of shielded loop antennas to measure

permittivity as a low-cost alternative to expensive probe-based systems for biological

tissues and surrogates. Beginning with the development of a model for simulation, the

shielded loop was characterized. Following the simulations, the shielded loop was tested

in

This work is concerned with the use of shielded loop antennas to measure

permittivity as a low-cost alternative to expensive probe-based systems for biological

tissues and surrogates. Beginning with the development of a model for simulation, the

shielded loop was characterized. Following the simulations, the shielded loop was tested

in free space and while holding a cup of water. The results were then compared. Because

the physical measurements and the simulation results did not line up, simulation results

were forgone. The shielded loop antenna was then used to measure a set of NaCl saline

solutions with varying molarities. This measurement was used as a calibration set, and

the results were analyzed. By taking the peak magnitude of the input impedance of each

solution, a trend was created for the molarities. Following this measurement and analysis,

a set of unknown solutions was tested. Based on the measurements and the empirical

trends from the calibration set of measurements, the molarities of the valid unknown

solutions were estimated. It is shown that using the known molarities, permittivity can

also be calculated. Using the estimated molarities of the unknown solutions, the

permittivity of each solution was calculated. The maximum error for the estimation was

1.07% from the actual data.
ContributorsYiin, Nathan (Author) / Aberle, James T., 1961- (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
155703-Thumbnail Image.png
Description
This thesis presents a power harvesting system combining energy from sub-cells of

multi-junction photovoltaic (MJ-PV) cells. A dual-input, inductor time-sharing boost

converter in continuous conduction mode (CCM) is proposed. A hysteresis inductor current

regulation in designed to reduce cross regulation caused by inductor-sharing in CCM. A

modified hill-climbing algorithm is implemented to achieve maximum

This thesis presents a power harvesting system combining energy from sub-cells of

multi-junction photovoltaic (MJ-PV) cells. A dual-input, inductor time-sharing boost

converter in continuous conduction mode (CCM) is proposed. A hysteresis inductor current

regulation in designed to reduce cross regulation caused by inductor-sharing in CCM. A

modified hill-climbing algorithm is implemented to achieve maximum power point

tracking (MPPT). A dual-path architecture is implemented to provide a regulated 1.8V

output. A proposed lossless current sensor monitors transient inductor current and a time-based power monitor is proposed to monitor PV power. The PV input provides power of

65mW. Measured results show that the peak efficiency achieved is around 85%. The

power switches and control circuits are implemented in standard 0.18um CMOS process.
ContributorsPeng, Qirong (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2017
155838-Thumbnail Image.png
Description
Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used

Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies.

Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques.

A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.
ContributorsRamamurthy, Chandarasekaran (Author) / Clark, Lawrence T (Thesis advisor) / Allee, David (Committee member) / Bakkaloglu, Bertan (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2017