Matching Items (2)
Filtering by

Clear all filters

154015-Thumbnail Image.png
Description
The microelectronics technology has seen a tremendous growth over the past sixty years. The advancements in microelectronics, which shows the capability of yielding highly reliable and reproducible structures, have made the mass production of integrated electronic components feasible. Miniaturized, low-cost, and accurate sensors became available due to the rise of

The microelectronics technology has seen a tremendous growth over the past sixty years. The advancements in microelectronics, which shows the capability of yielding highly reliable and reproducible structures, have made the mass production of integrated electronic components feasible. Miniaturized, low-cost, and accurate sensors became available due to the rise of the microelectronics industry. A variety of sensors are being used extensively in many portable applications. These sensors are promising not only in research area but also in daily routine applications.

However, many sensing systems are relatively bulky, complicated, and expensive and main advantages of new sensors do not play an important role in practical applications. Many challenges arise due to intricacies for sensor packaging, especially operation in a solution environment. Additional problems emerge when interfacing sensors with external off-chip components. A large amount of research in the field of sensors has been focused on how to improve the system integration.

This work presents new methods for the design, fabrication, and integration of sensor systems. This thesis addresses these challenges, for example, interfacing microelectronic system to a liquid environment and developing a new technique for impedimetric measurement. This work also shows a new design for on-chip optical sensor without any other extra components or post-processing.
ContributorsLuo, Tao (Author) / Blain Christen, Jennifer (Thesis advisor) / Song, Hongjiang (Committee member) / Goryll, Michael (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2015
155072-Thumbnail Image.png
Description
This work demonstrates novel nBn photodetectors including mid-wave infrared (MWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices (T2SLs) with charge as the output signal, and visible nBn photodetectors based on CdTe with current output. Furthermore, visible/MWIR two-color photodetectors (2CPDs) are fabricated through monolithic integration of the CdTe nBn photodetector and

This work demonstrates novel nBn photodetectors including mid-wave infrared (MWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices (T2SLs) with charge as the output signal, and visible nBn photodetectors based on CdTe with current output. Furthermore, visible/MWIR two-color photodetectors (2CPDs) are fabricated through monolithic integration of the CdTe nBn photodetector and an InSb photodiode.

The MWIR nBn photodetectors have a potential well for holes present in the barrier layer. At low voltages of < −0.2 V, which ensure low dark current <10-5 A/cm2 at 77 K, photogenerated holes are collected in this well with a storage lifetime of 40 s. This charge collection process is an in-device signal integration process that reduces the random noise significantly. Since the stored holes can be readout laterally as in charge-coupled devices, it is therefore possible to make charge-output nBn with much lower noise than conventional current-output nBn photodetectors.

The visible nBn photodetectors have a CdTe absorber layer and a ZnTe barrier layer with an aligned valence band edge. By using a novel ITO/undoped-CdTe top contact design, it has achieved a high specific detectivity of 3×1013 cm-Hz1/2/W at room temperature. Particularly, this CdTe nBn photodetector grown on InSb substrates enables the monolithic integration of CdTe and InSb photodetectors, and provides a platform to study in-depth device physics of nBn photodetectors at room temperature.

Furthermore, the visible/MWIR 2CPD has been developed by the monolithic integration of the CdTe nBn and an InSb photodiode through an n-CdTe/p-InSb tunnel junction. At 77 K, the photoresponse of the 2CPD can be switched between a 1-5.5 μm MWIR band and a 350-780 nm visible band by illuminating the device with an external light source or not, and applying with proper voltages. Under optimum conditions, the 2CPD has achieved a MWIR peak responsivity of 0.75 A/W with a band rejection ratio (BRR) of 52 dB, and a visible peak responsivity of 0.3 A/W with a BRR of 18 dB. This 2CPD has enabled future compact image sensors with high fill-factor and responsivity switchable between visible and MWIR colors.
ContributorsHe, Zhaoyu (Author) / Zhang, Yong-Hang (Thesis advisor) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2016