Matching Items (2)
Filtering by

Clear all filters

150084-Thumbnail Image.png
Description
Cellular redox phenomena are essential for the life of organisms. Described here is a summary of the synthesis of a number of redox-cycling therapeutic agents. The work centers on the synthesis of antitumor antibiotic bleomycin congeners. In addition, the synthesis of pyridinol analogues of alpha-tocopherol is also described.

Cellular redox phenomena are essential for the life of organisms. Described here is a summary of the synthesis of a number of redox-cycling therapeutic agents. The work centers on the synthesis of antitumor antibiotic bleomycin congeners. In addition, the synthesis of pyridinol analogues of alpha-tocopherol is also described. The bleomycins (BLMs) are a group of glycopeptide antibiotics that have been used clinically to treat several types of cancers. The antitumor activity of BLM is thought to be related to its degradation of DNA, and possibly RNA. Previous studies have indicated that the methylvalerate subunit of bleomycin plays an important role in facilitating DNA cleavage by bleomycin and deglycobleomycin. A series of methylvalerate analogues have been synthesized and incorporated into deglycobleomycin congeners by the use of solid-phase synthesis. All of the deglycobleomycin analogues were found to effect the relaxation of plasmid DNA. Those analogues having aromatic C4-substituents exhibited cleavage efficiency comparable to that of deglycoBLM A5. Some, but not all, of the deglycoBLM analogues were also capable of mediating sequence-selective DNA cleavage. The second project focused on the synthesis of bicyclic pyridinol analogues of alpha-tocopherol. Bicyclic pyridinol antioxidants have recently been reported to suppress the autoxidation of methyl linoleate more effectively than alpha-tocopherol. However, the complexity of the synthetic routes has hampered their further development as therapeutic agents. Described herein is a concise synthesis of two bicyclic pridinol antioxidants and a facile approach to their derivatives with simple alkyl chains attached to the antioxidant core. These analogues were shown to retain biological activity and exhibit tocopherol-like behaviour.
ContributorsCai, Xiaoqing (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian R (Committee member) / Hartnett, Hilairy E (Committee member) / Arizona State University (Publisher)
Created2011
149632-Thumbnail Image.png
Description
Many natural and synthetic quinones have shown biological and pharmacological activity. Some of them have also shown anticancer activity. Ubiquinone (CoQ10) which is a natural quinone, is a component of the electron transport chain and participates in generation of ATP (adenosine triphosphate). Cellular oxidative stress is key feature of many

Many natural and synthetic quinones have shown biological and pharmacological activity. Some of them have also shown anticancer activity. Ubiquinone (CoQ10) which is a natural quinone, is a component of the electron transport chain and participates in generation of ATP (adenosine triphosphate). Cellular oxidative stress is key feature of many neurodegenerative diseases such as Friedreich's ataxia, Alzheimer's disease and Parkinson's disease. The increased generation of reactive oxygen species damages cell membranes and leads to cell death. Analogues of ubiquinone in the form of pyrimidinols and pyridinols, were effective in protecting Friedreich's ataxia lymphocytes from oxidative stress- induced cell death. There were some structural features which could be identified that should be useful for the design of the analogues for cellular protection against oxidative stress. There are quinones such as doxorubicin, daunomycin and topopyrones which have anticancer activity. Here I evaluated topopyrone analogues which poison both topoisomerases I and II. The topopyrone analogues were lethal to human breast cancer cells, but these analogues were not as potent as camptothecin.
ContributorsRaghav, Nidhi (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian R (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011