Matching Items (12)

150145-Thumbnail Image.png

Combretastatin A-2 synthetic modifications

Description

Combretastatin A-4 (CA-4) represents one of the most promising antineoplastic and cancer vascular targeting stilbenes that have been isolated from the South African bush willow, Combretum Caffrum Kuntze. In

Combretastatin A-4 (CA-4) represents one of the most promising antineoplastic and cancer vascular targeting stilbenes that have been isolated from the South African bush willow, Combretum Caffrum Kuntze. In order to further explore the bioactivity of this molecule, a diiodo derivative of CA-4, as well as its phosphate prodrug, was synthesized and analyzed for its biological activity; although only a scale up synthesis of this compound was performed herein for ongoing analysis. In general, no increased specificity was noted for the human cancer cell lines. Antiangiogenic properties were similar to the untreated control. The diiodocombstatin was active against M. luteus, and its phosphate prodrugs were very active against N. gonorrhoeae. Combretastain A-2 is another biologically active stilbene isolated from Combretum Caffrum Kuntze. In an attempt to increase biological activity of this molecule both mono-iodo and diiodo derivatives have been partially synthesized. The initial step involving the iodination of piperonal utilizes a novel, cost effective and mild reaction. The iodo stilbenes were obtained via a Wittig reaction using phosphonium salts 25 and 27 along with 2,3-Bis-[tert-butyldimethylsiloxy]-4-methoxy benzaldehyde 29. Deprotection of the subsequent z-stilbenes, non-isolated mono-iodo stilbene and the diiodo 30 produced two synthetic objective z-stilbenes 16 and 17. Synthesis as well as biological analysis is ongoing.

Contributors

Agent

Created

Date Created
  • 2011

150424-Thumbnail Image.png

Breaking the senescence: inhibition of ATM allows S9 cells to re-enter cell cycle

Description

The Philadelphia chromosome in humans, is on oncogenic translocation between chromosomes 9 and 22 that gives rise to the fusion protein BCR-Abl. This protein is constitutively active resulting in rapid

The Philadelphia chromosome in humans, is on oncogenic translocation between chromosomes 9 and 22 that gives rise to the fusion protein BCR-Abl. This protein is constitutively active resulting in rapid and uncontrolled cell growth in affected cells. The BCR-Abl protein is the hallmark feature of chronic myeloid leukemia (CML) and is seen in Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) cases. Currently, the first line of treatment is the Abl specific inhibitor Imatinib. Some patients will, however, develop resistance to Imatinib. Research has shown how transformation of progenitor B cells with v-Abl, an oncogene expressed by the Abelson murine leukemia virus, causes rapid proliferation, prevents further differentiation and produces a potentially malignant transformation. We have used progenitor B cells transformed with a temperature-sensitive form of the v-Abl protein that allows us to inactivate or re-activate v-Abl by shifting the incubation temperature. We are trying to use this line as a model to study both the progression from pre-malignancy to malignancy in CML and Imatinib resistance in Ph+ ALL and CML. These progenitor B cells, once v-Abl is reactivated, in most cases, will not return to their natural cell cycle. In this they resemble Ph+ ALL and CML under Imatinib treatment. With some manipulation these cells can break this prolonged G1 arrested phenotype and become a malignant cell line and resistant to Imatinib treatment. Cellular senescence can be a complicated process requiring inter-play between a variety of players. It serves as an alternate option to apoptosis, in that the cell loses proliferative potential, but does not die. Treatment with some cancer therapeutics will induce senescence in some cancers. Such is the case with Imatinib treatment of CML and Ph+ ALL. By using the S9 cell line we have been able to explore the possible routes for breaking of prolonged G1 arrest in these Ph+ leukemias. We inhibited the DNA damage sensor protein ataxia telangiectasia mutated (ATM) and found that prolonged G1 arrest in our S9 cells was broken. While previous research has suggested that the DNA damage sensor protein ataxia-telangiectasia mutated (ATM) has little impact in CML, our research indicates that ATM may play a role in either senescence induction or release.

Contributors

Agent

Created

Date Created
  • 2011

149632-Thumbnail Image.png

Structure activity studies of quinones and analogues

Description

Many natural and synthetic quinones have shown biological and pharmacological activity. Some of them have also shown anticancer activity. Ubiquinone (CoQ10) which is a natural quinone, is a component of

Many natural and synthetic quinones have shown biological and pharmacological activity. Some of them have also shown anticancer activity. Ubiquinone (CoQ10) which is a natural quinone, is a component of the electron transport chain and participates in generation of ATP (adenosine triphosphate). Cellular oxidative stress is key feature of many neurodegenerative diseases such as Friedreich's ataxia, Alzheimer's disease and Parkinson's disease. The increased generation of reactive oxygen species damages cell membranes and leads to cell death. Analogues of ubiquinone in the form of pyrimidinols and pyridinols, were effective in protecting Friedreich's ataxia lymphocytes from oxidative stress- induced cell death. There were some structural features which could be identified that should be useful for the design of the analogues for cellular protection against oxidative stress. There are quinones such as doxorubicin, daunomycin and topopyrones which have anticancer activity. Here I evaluated topopyrone analogues which poison both topoisomerases I and II. The topopyrone analogues were lethal to human breast cancer cells, but these analogues were not as potent as camptothecin.

Contributors

Agent

Created

Date Created
  • 2011

154259-Thumbnail Image.png

Small molecule inhibition of quiescin sulfhydryl oxidase 1 (QSOX1), a dynamic pro-tumorigenic regulator of the extracellular matrix

Description

Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that represents the ancient fusion of two major thiol-disulfide oxidoreductase gene families: thioredoxin and ERV. QSOX1 was first

Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that represents the ancient fusion of two major thiol-disulfide oxidoreductase gene families: thioredoxin and ERV. QSOX1 was first linked with cancer after being identified as overexpressed in pancreatic ductal adenocarcinoma (but not in adjacent normal ductal epithelia, infiltrating lymphocytes, or chronic pancreatitis). QSOX1 overexpression has been confirmed in a number of other histological tumor types, such as breast, lung, kidney, prostate, and others. Expression of QSOX1 supports a proliferative and invasive phenotype in tumor cells, and its enzymatic activity is critical for promoting an invasive phenotype. An in vivo tumor growth study utilizing the pancreatic tumor cell line MIAPaCa-2 containing a QSOX1-silencing shRNA construct revealed that QSOX1 expression supports a proliferative phenotype. These preliminary studies suggest that suppressing the enzymatic activity of QSOX1 could represent a novel therapeutic strategy to inhibit proliferation and invasion of malignant neoplasms.

The goal of this research was to identify and characterize biologically active small molecule inhibitors for QSOX1. Chemical inhibition of QSOX1 enzymatic activity was hypothesized to reduce growth and invasion of tumor cells. Recombinant QSOX1 was screened against libraries of small molecules using an enzymatic activity assay to identify potential QSOX1 inhibitors. Two lead QSOX1 inhibitors were confirmed, 2-phenyl-1, 2-benzisoselenazol-3-one (ebselen), and 3-methoxy-n-[4-(1 pyrrolidinyl)phenyl]benzamide. The biological activity of these compounds is consistent with QSOX1 knockdown in tumor cell lines, reducing growth and invasion in vitro. Treatment of tumor cells with these compounds also resulted in specific ECM defects, a phenotype associated with QSOX1 knockdown. Additionally, these compounds were shown to be active in pancreatic and renal cancer xenografts, reducing tumor growth with daily treatment. For ebselen, the molecular mechanism of inhibition was determined using a combination of biochemical and mass spectrometric techniques. The results obtained in these studies provide proof-of-principle that targeting QSOX1 enzymatic activity with chemical compounds represents a novel potential therapeutic avenue worthy of further investigation in cancer. Additionally, the utility of these small molecules as chemical probes will yield future insight into the general biology of QSOX1, including the identification of novel substrates of QSOX1.

Contributors

Agent

Created

Date Created
  • 2015

149699-Thumbnail Image.png

Synthesis and evaluation of a new class of cancer chemotherapeutics based on purine-like extended amidines

Description

A potential new class of cancer chemotherapeutic agents has been synthesized by varying the 2 position of a benzimidazole based extended amidine. Compounds 6-amino-2-chloromethyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1A) and 6-amino-2-hydroxypropyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1B) were assayed

A potential new class of cancer chemotherapeutic agents has been synthesized by varying the 2 position of a benzimidazole based extended amidine. Compounds 6-amino-2-chloromethyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1A) and 6-amino-2-hydroxypropyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1B) were assayed at the National Cancer Institute's (NCI) Developmental Therapeutic Program (DTP) and found to be cytotoxic at sub-micromolar concentrations, and have shown between a 100 and a 1000-fold increase in specificity towards lung, colon, CNS, and melanoma cell lines. These ATP mimics have been found to correlate with sequestosome 1 (SQSTM1), a protein implicated in drug resistance and cell survival in various cancer cell lines. Using the DTP COMPARE algorithm, compounds 1A and 1B were shown to correlate to each other at 77%, but failed to correlate with other benzimidazole based extended amidines previously synthesized in this laboratory suggesting they operate through a different biological mechanism.

Contributors

Agent

Created

Date Created
  • 2011

151442-Thumbnail Image.png

Synthesis of halo alkyl and alkenyl ortho-carboxy aryls and bromo nitro lactones as inhibitors of protein tyrosine phosphatases and cancer cell growth

Description

Changes to a cell's DNA can result in cancer, which is permanently sustained cellular proliferation. When malfunctioning genes, oncogenes, were verified to be of human origin in the 1970s, drugs

Changes to a cell's DNA can result in cancer, which is permanently sustained cellular proliferation. When malfunctioning genes, oncogenes, were verified to be of human origin in the 1970s, drugs were designed to target their encoded, abnormal enzymes. Tyrosine kinases have been established as an oft-modified oncogene enzyme family, but the protein tyrosine phosphatases (PTPs) were not investigated as thoroughly. PTPs have gradually been established as relevant enzymes that work in tandem with tyrosine kinases in cell signaling and are not just "house-keeping" enzymes. Some PTPs are thought to initiate tumorigenesis, and others may play a complementary role after the onset of cancer by extending the duration of cellular signals. Reversible inhibition of these enzymes by an oxalylamino group substituted on an ortho-carboxy aryl have been described in the literature. Modification of the oxalylamino group to favor irreversible inhibition of these cysteine-dependent enzymes may prevent inhibitor efflux by cells and subsequent mutation to gain resistance. Replacement of the oxalylamino group with halogenated propanoate and propenoate esters minimally inhibited cancer cell growth but did not inhibit activity of PTPs. Of the ortho-carboxy aryl structures, a methyl dichloropropanoate (compound 24) and a lactone alkene (compound 29) inhibited cell growth by 50% (GI-50) at micromolar concentrations. The GI-50s for compounds 24 and 29 were 19.9 (DU-145, prostate carcinoma) and 9.4 micromolar (A549, lung cancer), respectively. In contrast, brominated nitro lactones were able to inhibit both cancer cell growth and the activity of PTPs. In a sulforhodamine B assay, these compounds were able to achieve GI-50s as low 5.3 micromolar (compound 33 against BXPC-3, pancreatic adenocarcinoma), and some killed 50% of cancer cells (LC-50) at micromolar concentrations. Compound 33 displayed LC-50 of 23.3 micromolar (BXPC-3), and compound 35 had LC-50s of 32.9 and 32.7 micromolar against BXPC-3 and colon adenocarcinoma (KM20L2), respectively. A single concentration (100 micromolar) inhibition assay of inhibitor PTPs resulted in no enzyme activity for 4 out of 5 PTPs tested with compound 33. Similar results were obtained for compounds 35 and 37. Future analysis will determine if these bromo nitro lactones are irreversibly inhibiting PTPs.

Contributors

Agent

Created

Date Created
  • 2012

152375-Thumbnail Image.png

Bleomycin, from start to finish: total synthesis of novel analogues to in vitro fluorescence microscopy imaging

Description

The bleomycins are a family of glycopeptide-derived antibiotics isolated from various Streptomyces species and have been the subject of much attention from the scientific community as a consequence of their

The bleomycins are a family of glycopeptide-derived antibiotics isolated from various Streptomyces species and have been the subject of much attention from the scientific community as a consequence of their antitumor activity. Bleomycin clinically and is an integral part of a number of combination chemotherapy regimens. It has previously been shown that bleomycin has the ability to selectively target tumor cells over their non-malignant counterparts. Pyrimidoblamic acid, the N-terminal metal ion binding domain of bleomycin is known to be the moiety that is responsible for O2 activation and the subsequent chemistry leading to DNA strand scission and overall antitumor activity. Chapter 1 describes bleomycin and related DNA targeting antitumor agents as well as the specific structural domains of bleomycin. Various structural analogues of pyrimidoblamic acid were synthesized and subsequently incorporated into their corresponding full deglycoBLM A6 derivatives by utilizing a solid support. Their activity was measured using a pSP64 DNA plasmid relaxation assay and is summarized in Chapter 2. The specifics of bleomycin—DNA interaction and kinetics were studied via surface plasmon resonance and are presented in Chapter 3. By utilizing carefully selected 64-nucleotide DNA hairpins with variable 16-mer regions whose sequences showed strong binding in past selection studies, a kinetic profile was obtained for several BLMs for the first time since bleomycin was discovered in 1966. The disaccharide moiety of bleomycin has been previously shown to be a specific tumor cell targeting element comprised of L-gulose-D-mannose, especially between MCF-7 (breast cancer cells) and MCF-10A ("normal" breast cells). This phenomenon was further investigated via fluorescence microscopy using multiple cancerous cell lines with matched "normal" counterparts and is fully described in Chapter 4.

Contributors

Agent

Created

Date Created
  • 2013

150491-Thumbnail Image.png

Identification of neo-antigens for a cancer vaccine by transcriptome analysis

Description

We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift

We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift (FS) peptide or viral peptide are quite attractive for a variety of reasons. FS sequences, from either mistake in RNA processing or in genomic DNA, may lead to generation of neo-peptides that are foreign to the immune system. Viral peptides presumably would originate from exogenous but integrated viral nucleic acid sequences. Both are non-self, therefore lessen concerns about development of autoimmunity. I have developed a bioinformatical approach to identify these aberrant transcripts in the cancer transcriptome. Their suitability for use in a vaccine is evaluated by establishing their frequencies and predicting possible epitopes along with their population coverage according to the prevalence of major histocompatibility complex (MHC) types. Viral transcripts and transcripts with FS mutations from gene fusion, insertion/deletion at coding microsatellite DNA, and alternative splicing were identified in NCBI Expressed Sequence Tag (EST) database. 48 FS chimeric transcripts were validated in 50 breast cell lines and 68 primary breast tumor samples with their frequencies from 4% to 98% by RT-PCR and sequencing confirmation. These 48 FS peptides, if translated and presented, could be used to protect more than 90% of the population in Northern America based on the prediction of epitopes derived from them. Furthermore, we synthesized 150 peptides that correspond to FS and viral peptides that we predicted would exist in tumor patients and we tested over 200 different cancer patient sera. We found a number of serological reactive peptide sequences in cancer patients that had little to no reactivity in healthy controls; strong support for the strength of our bioinformatic approach. This study describes a process used to identify aberrant transcripts that lead to a new source of antigens that can be tested and used in a prophylactic cancer vaccine. The vast amount of transcriptome data of various cancers from the Cancer Genome Atlas (TCGA) project will enhance our ability to further select better cancer antigen candidates.

Contributors

Agent

Created

Date Created
  • 2012

150218-Thumbnail Image.png

Study of site specific cleavage of strongly bound hairpin DNAs by bleomycin

Description

Natural products that target the DNA of cancer cells have been an important source of knowledge and understanding in the development of anticancer chemotherapeutic agents. Bleomycin (BLM) exemplifies this class

Natural products that target the DNA of cancer cells have been an important source of knowledge and understanding in the development of anticancer chemotherapeutic agents. Bleomycin (BLM) exemplifies this class of DNA damaging agent. The ability of BLM to chelate metal ions and effect oxidative damage of the deoxyribose sugar moiety of DNA has been studied extensively for four decades. Here, the study of BLM A5 was conducted using a previously isolated library of hairpin DNAs found to bind strongly to metal free BLM. The ability of BLM to effect single-stranded was then extensively characterized on both the 3′ and 5′-arms of the hairpin DNAs. The strongly bound DNAs were found to be efficient substrates for Fe·BLM A5-mediated cleavage. Surprisingly, the most prevalent site of damage by BLM was found to be a 5′-AT-3′ dinucleotide sequence. This dinucleotide sequence and others generally not cleaved by BLM when examined using arbitrarily chosen DNA substrate were found in examining the library of ten hairpin DNAs. In total, 111 sites of DNA damage were found to be produced by exposure of the hairpin DNA library to Fe·BLM A5. Also, an assay was developed with which to test the propensity of the hairpin DNAs to undergo double stranded DNA damage. Adapting methods previously described by the Povirk laboratory, one hairpin was characterized using this method. The results were in accordance with those previously reported.

Contributors

Agent

Created

Date Created
  • 2011

153119-Thumbnail Image.png

An investigation of the interaction of DNA with selected peptides and proteins

Description

The communication of genetic material with biomolecules has been a major interest in cancer biology research for decades. Among its different levels of involvement, DNA is known to be a

The communication of genetic material with biomolecules has been a major interest in cancer biology research for decades. Among its different levels of involvement, DNA is known to be a target of several antitumor agents. Additionally, tissue specific interaction between macromolecules such as proteins and structurally important regions of DNA has been reported to define the onset of certain types of cancers.

Illustrated in Chapter 1 is the general history of research on the interaction of DNA and anticancer drugs, most importantly different congener of bleomycin (BLM). Additionally, several synthetic analogues of bleomycin, including the structural components and functionalities, are discussed.

Chapter 2 describes a new approach to study the double-strand DNA lesion caused by antitumor drug bleomycin. The hairpin DNA library used in this study displays numerous cleavage sites demonstrating the versatility of bleomycin interaction with DNA. Interestingly, some of those cleavage sites suggest a novel mechanism of bleomycin interaction, which has not been reported before.

Cytidine methylation has generally been found to decrease site-specific cleavage of DNA by BLM, possibly due to structural change and subsequent reduced bleomycin-mediated recognition of DNA. As illustrated in Chapter 3, three hairpin DNAs known to be strongly bound by bleomycin, and their methylated counterparts, were used to study the dynamics of bleomycin-induced degradation of DNAs in cancer cells. Interestingly, cytidine methylation on one of the DNAs has also shown a major shift in the intensity of bleomycin induced double-strand DNA cleavage pattern, which is known to be a more potent form of bleomycin induced cleavages.

DNA secondary structures are known to play important roles in gene regulation. Chapter 4 demonstrates a structural change of the BCL2 promoter element as a result of its dynamic interaction with the individual domains of hnRNP LL, which is essential to facilitate the transcription of BCL2. Furthermore, an in vitro protein synthesis technique has been employed to study the dynamic interaction between protein domains and the i-motif DNA within the promoter element. Several constructs were made involving replacement of a single amino acid with a fluorescent analogue, and these were used to study FRET between domain 1 and the i-motif, the later of which harbored a fluorescent acceptor nucleotide analogue.

Contributors

Agent

Created

Date Created
  • 2014