Matching Items (612)
Filtering by

Clear all filters

Description
Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from

Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from three different composers. The resulting works are Seres Imaginarios 3 by Luis Cardoso; Delirio Barroco by Tiago Derrica; and Memória by Pedro Faria Gomes. In an effort to submit these new works for inclusion into mainstream performance literature, the author has recorded these works on compact disc. This document includes interview transcripts with each composer, providing first-person discussion of each composition, as well as detailed biographical information on each composer. To provide context, the author has included a brief discussion on Portuguese folk music, and in particular, the role that the clarinet plays in Portuguese folk music culture.
ContributorsFerreira, Wesley (Contributor) / Spring, Robert S (Thesis advisor) / Bailey, Wayne (Committee member) / Gardner, Joshua (Committee member) / Hill, Gary (Committee member) / Schuring, Martin (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsBurton, Charlotte (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-08
149825-Thumbnail Image.png
Description
In this thesis, I present a lab-on-a-chip (LOC) that can separate and detect Escherichia Coli (E. coli) in simulated urine samples for Urinary Tract Infection (UTI) diagnosis. The LOC consists of two (concentration and sensing) chambers connected in series and an integrated impedance detector. The two-chamber approach is designed to

In this thesis, I present a lab-on-a-chip (LOC) that can separate and detect Escherichia Coli (E. coli) in simulated urine samples for Urinary Tract Infection (UTI) diagnosis. The LOC consists of two (concentration and sensing) chambers connected in series and an integrated impedance detector. The two-chamber approach is designed to reduce the non-specific absorption of proteins, e.g. albumin, that potentially co-exist with E. coli in urine. I directly separate E. coli K-12 from a urine cocktail in a concentration chamber containing micro-sized magnetic beads (5 µm in diameter) conjugated with anti-E. coli antibodies. The immobilized E. coli are transferred to a sensing chamber for the impedance measurement. The measurement at the concentration chamber suffers from non-specific absorption of albumin on the gold electrode, which may lead to a false positive response. By contrast, the measured impedance at the sensing chamber shows ~60 kÙ impedance change between 6.4x104 and 6.4x105 CFU/mL, covering the threshold of UTI (105 CFU/mL). The sensitivity of the LOC for detecting E. coli is characterized to be at least 3.4x104 CFU/mL. I also characterized the LOC for different age groups and white blood cell spiked samples. These preliminary data show promising potential for application in portable LOC devices for UTI detection.
ContributorsKim, Sangpyeong (Author) / Chae, Junseok (Thesis advisor) / Phillips, Stephen M. (Committee member) / Blain Christen, Jennifer M. (Committee member) / Arizona State University (Publisher)
Created2011
Description
This research investigated using impedance as a minimally invasive oral cancer-screening tool by modeling healthy and diseased tissue. This research developed an ultra-structurally based tissue model for oral mucosa that is versatile enough to be easily modified to mimic the passive electrical impedance responses of multiple benign and cancerous tissue

This research investigated using impedance as a minimally invasive oral cancer-screening tool by modeling healthy and diseased tissue. This research developed an ultra-structurally based tissue model for oral mucosa that is versatile enough to be easily modified to mimic the passive electrical impedance responses of multiple benign and cancerous tissue types. This new model provides answers to biologically meaningful questions related to the impedance response of healthy and diseased tissues. This model breaks away from the old empirical top down "black box" Thèvinin equivalent model. The new tissue model developed here was created from a bottom up perspective resulting in a model that is analogous to having a "Transparent Box" where each network element relating to a specific structural component is known. This new model was developed starting with sub cellular ultra-structural components such as membranes, proteins and electrolytes. These components formed the basic network elements and topology of the organelles. The organelle networks combine to form the cell networks. The cell networks combine to make networks of cell layers and the cell layers were combined into tissue networks. This produced the complete "Transparent Box" model for normal tissue. This normal tissue model was modified for disease based on the ultra-structural pathology of each disease. The diseased tissues evaluated include cancers type one through type three; necrotic-inflammation, hyperkeratosis and the compound condition of hyperkeratosis over cancer type two. The impedance responses for each of the disease were compared side by side with the response of normal healthy tissue. Comparative evidence from the models showed the structural changes in cancer produce a unique identifiable impedance "finger print." The evaluation of the "Transparent Box" model for normal tissues and diseased tissues show clear support for using comparative impedance measurements as a clinical tool for oral cancer screening.
ContributorsPelletier, Peter Robert (Author) / Kozicki, Michael (Thesis advisor) / Towe, Bruce (Committee member) / Saraniti, Marco (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsDruesedow, Elizabeth (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-07
Description
This project includes a recording and performance guide for three newly commissioned pieces for the clarinet. The first piece, shimmer, was written by Grant Jahn and is for B-flat clarinet and electronics. The second piece, Paragon, is for B-flat clarinet and piano and was composed by Dr. Theresa Martin. The

This project includes a recording and performance guide for three newly commissioned pieces for the clarinet. The first piece, shimmer, was written by Grant Jahn and is for B-flat clarinet and electronics. The second piece, Paragon, is for B-flat clarinet and piano and was composed by Dr. Theresa Martin. The third and final piece, Duality in the Eye of a Bovine, was written by Kurt Mehlenbacher and is for B-flat clarinet, bass clarinet, and piano. In addition to the performance guide, this document also includes background information and program notes for the compositions, as well as composer biographical information, a list of other works featuring the clarinet by each composer, and transcripts of composer and performer interviews. This document is accompanied by a recording of the three pieces.
ContributorsPoupard, Caitlin Marie (Author) / Spring, Robert (Thesis advisor) / Gardner, Joshua (Thesis advisor) / Hill, Gary (Committee member) / Oldani, Robert (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2016
Description
The primary objective of this research project is to expand the clarinet repertoire with the addition of four new pieces. Each of these new pieces use contemporary clarinet techniques, including electronics, prerecorded sounds, multiphonics, circular breathing, multiple articulation, demi-clarinet, and the clari-flute. The repertoire composed includes Grant Jahn’s Duo for

The primary objective of this research project is to expand the clarinet repertoire with the addition of four new pieces. Each of these new pieces use contemporary clarinet techniques, including electronics, prerecorded sounds, multiphonics, circular breathing, multiple articulation, demi-clarinet, and the clari-flute. The repertoire composed includes Grant Jahn’s Duo for Two Clarinets, Reggie Berg’s Funkalicious for Clarinet and Piano, Rusty Banks’ Star Juice for Clarinet and Fixed Media, and Chris Malloy’s A Celestial Breath for Clarinet and Electronics. In addition to the musical commissions, this project also includes interviews with the composers indicating how they wrote these works and what their influences were, along with any information pertinent to the performer, professional recordings of each piece, as well as performance notes and suggestions.
ContributorsCase-Ruchala, Celeste Ann (Contributor) / Gardner, Joshua (Thesis advisor) / Spring, Robert (Thesis advisor) / Hill, Gary (Committee member) / Rogers, Rodney (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2016
ContributorsClements, Katrina (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-15
ContributorsClifton-Armenta, Tyler (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-16
ContributorsMoonitz, Olivia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-13