Matching Items (617)
Filtering by

Clear all filters

Description
Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly

Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly to the brain, providing feedback about features of objects in contact with the prosthetic. To achieve this goal, multiple simultaneous streams of information will need to be encoded by ICMS in a manner that produces robust, reliable, and discriminable sensations. The first segment of this work focuses on the discriminability of sensations elicited by ICMS within somatosensory cortex. Stimulation on multiple single electrodes and near-simultaneous stimulation across multiple electrodes, driven by a multimodal tactile sensor, were both used in these experiments. A SynTouch BioTac sensor was moved across a flat surface in several directions, and a subset of the sensor's electrode impedance channels were used to drive multichannel ICMS in the somatosensory cortex of a non-human primate. The animal performed a behavioral task during this stimulation to indicate the discriminability of sensations evoked by the electrical stimulation. The animal's responses to ICMS were somewhat inconsistent across experimental sessions but indicated that discriminable sensations were evoked by both single and multichannel ICMS. The factors that affect the discriminability of stimulation-induced sensations are not well understood, in part because the relationship between ICMS and the neural activity it induces is poorly defined. The second component of this work was to develop computational models that describe the populations of neurons likely to be activated by ICMS. Models of several neurons were constructed, and their responses to ICMS were calculated. A three-dimensional cortical model was constructed using these cell models and used to identify the populations of neurons likely to be recruited by ICMS. Stimulation activated neurons in a sparse and discontinuous fashion; additionally, the type, number, and location of neurons likely to be activated by stimulation varied with electrode depth.
ContributorsOverstreet, Cynthia K (Author) / Helms Tillery, Stephen I (Thesis advisor) / Santos, Veronica (Committee member) / Buneo, Christopher (Committee member) / Otto, Kevin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013
Description
Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from

Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from three different composers. The resulting works are Seres Imaginarios 3 by Luis Cardoso; Delirio Barroco by Tiago Derrica; and Memória by Pedro Faria Gomes. In an effort to submit these new works for inclusion into mainstream performance literature, the author has recorded these works on compact disc. This document includes interview transcripts with each composer, providing first-person discussion of each composition, as well as detailed biographical information on each composer. To provide context, the author has included a brief discussion on Portuguese folk music, and in particular, the role that the clarinet plays in Portuguese folk music culture.
ContributorsFerreira, Wesley (Contributor) / Spring, Robert S (Thesis advisor) / Bailey, Wayne (Committee member) / Gardner, Joshua (Committee member) / Hill, Gary (Committee member) / Schuring, Martin (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsBurton, Charlotte (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-08
ContributorsDruesedow, Elizabeth (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-07
151088-Thumbnail Image.png
Description
Approximately 1.7 million people in the United States are living with limb loss and are in need of more sophisticated devices that better mimic human function. In the Human Machine Integration Laboratory, a powered, transtibial prosthetic ankle was designed and build that allows a person to regain ankle function with

Approximately 1.7 million people in the United States are living with limb loss and are in need of more sophisticated devices that better mimic human function. In the Human Machine Integration Laboratory, a powered, transtibial prosthetic ankle was designed and build that allows a person to regain ankle function with improved ankle kinematics and kinetics. The ankle allows a person to walk normally and up and down stairs, but volitional control is still an issue. This research tackled the problem of giving the user more control over the prosthetic ankle using a force/torque circuit. When the user presses against a force/torque sensor located inside the socket the prosthetic foot plantar flexes or moves downward. This will help the user add additional push-off force when walking up slopes or stairs. It also gives the user a sense of control over the device.
ContributorsFronczyk, Adam (Author) / Sugar, Thomas G. (Thesis advisor) / Helms-Tillery, Stephen (Thesis advisor) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2012
157461-Thumbnail Image.png
Description
Locomotion is of prime importance in enabling human beings to effectively respond

in space and time to meet different needs. Approximately 2 million Americans live

with an amputation with most of those amputations being of the lower limbs. To

advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt

performance at a

Locomotion is of prime importance in enabling human beings to effectively respond

in space and time to meet different needs. Approximately 2 million Americans live

with an amputation with most of those amputations being of the lower limbs. To

advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt

performance at a level of intelligence seen in human walking. As such, this thesis

focuses on the mechanisms involved during human walking, while transitioning from

rigid to compliant surfaces such as from pavement to sand, grass or granular media.

Utilizing a unique tool, the Variable Stiffness Treadmill (VST), as the platform for

human walking, rigid to compliant surface transitions are simulated. The analysis of

muscular activation during the transition from rigid to different compliant surfaces

reveals specific anticipatory muscle activation that precedes stepping on a compliant

surface. There is also an indication of varying responses for different surface stiffness

levels. This response is observed across subjects. Results obtained are novel and

useful in establishing a framework for implementing control algorithm parameters to

improve powered ankle prosthesis. With this, it is possible for the prosthesis to adapt

to a new surface and therefore resulting in a more robust smart powered lower limb

prosthesis.
ContributorsObeng, Ruby Afriyie (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Thesis advisor) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
155947-Thumbnail Image.png
Description
In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to manufacture while having superior functionality. This prosthetic ankle design has

In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to manufacture while having superior functionality. This prosthetic ankle design has two springs: one mimicking Achilles tendon and the other mimicking Anterior-Tibialis tendon. The dynamics of the prosthetic ankle is discussed and simulated using Working model 2D. The simulation results are used to optimize the springs stiffness. Two experiments are conducted using the developed ankle to verify the simulation It is found that this novel ankle design is better than Solid Ankle Cushioned Heel (SACH) foot. The experimental data is used to find the tendon and muscle activation forces of the subject wearing the prosthesis using OpenSim. A conclusion is included along with suggested future work.
ContributorsBhat, Sandesh Ganapati (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Lee, Hyuglae (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2017
157220-Thumbnail Image.png
Description
There are a large group of amputees living in the country and the number of them is supposed to increase a lot in the following years. Among them, lower-limb amputees are the majority. In order to improve the locomotion of lower-limb amputees, many prostheses have been developed. Most commercially available

There are a large group of amputees living in the country and the number of them is supposed to increase a lot in the following years. Among them, lower-limb amputees are the majority. In order to improve the locomotion of lower-limb amputees, many prostheses have been developed. Most commercially available prostheses are passive. They can not actively provide pure torque as an intact human could do. Powered prostheses have been the focus during the past decades. Some advanced prostheses have been successful in walking on level ground as well as on inclined surface and climbing stairs. However, not much work has been done regarding walking on compliant surfaces. My preliminary studies on myoelectric signals of the lower limbs during walking showed that there exists difference in muscle activation when walking on compliant surfaces. However, the mapping of muscle activities to joint torques for a prosthesis that will be capable of providing the required control to walk on compliant surfaces is not straightforward. In order to explore the effects of surface compliance on leg joint torque, a dynamic model of the lower limb was built using Simscape. The simulated walker (android) was commanded to track the same kinematics data of intact human walking on solid surface. Multiple simulations were done while varying ground stiffness in order to see how the torque at the leg joints would change as a function of the ground compliance. The results of this study could be used for the control of powered prostheses for robust walking on compliant surfaces.
ContributorsWang, Junxin, 1989- (Author) / Artemiadis, Panagiotis (Thesis advisor) / Yong, Sze Zheng (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
Description
This project includes a recording and performance guide for three newly commissioned pieces for the clarinet. The first piece, shimmer, was written by Grant Jahn and is for B-flat clarinet and electronics. The second piece, Paragon, is for B-flat clarinet and piano and was composed by Dr. Theresa Martin. The

This project includes a recording and performance guide for three newly commissioned pieces for the clarinet. The first piece, shimmer, was written by Grant Jahn and is for B-flat clarinet and electronics. The second piece, Paragon, is for B-flat clarinet and piano and was composed by Dr. Theresa Martin. The third and final piece, Duality in the Eye of a Bovine, was written by Kurt Mehlenbacher and is for B-flat clarinet, bass clarinet, and piano. In addition to the performance guide, this document also includes background information and program notes for the compositions, as well as composer biographical information, a list of other works featuring the clarinet by each composer, and transcripts of composer and performer interviews. This document is accompanied by a recording of the three pieces.
ContributorsPoupard, Caitlin Marie (Author) / Spring, Robert (Thesis advisor) / Gardner, Joshua (Thesis advisor) / Hill, Gary (Committee member) / Oldani, Robert (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2016
Description
The primary objective of this research project is to expand the clarinet repertoire with the addition of four new pieces. Each of these new pieces use contemporary clarinet techniques, including electronics, prerecorded sounds, multiphonics, circular breathing, multiple articulation, demi-clarinet, and the clari-flute. The repertoire composed includes Grant Jahn’s Duo for

The primary objective of this research project is to expand the clarinet repertoire with the addition of four new pieces. Each of these new pieces use contemporary clarinet techniques, including electronics, prerecorded sounds, multiphonics, circular breathing, multiple articulation, demi-clarinet, and the clari-flute. The repertoire composed includes Grant Jahn’s Duo for Two Clarinets, Reggie Berg’s Funkalicious for Clarinet and Piano, Rusty Banks’ Star Juice for Clarinet and Fixed Media, and Chris Malloy’s A Celestial Breath for Clarinet and Electronics. In addition to the musical commissions, this project also includes interviews with the composers indicating how they wrote these works and what their influences were, along with any information pertinent to the performer, professional recordings of each piece, as well as performance notes and suggestions.
ContributorsCase-Ruchala, Celeste Ann (Contributor) / Gardner, Joshua (Thesis advisor) / Spring, Robert (Thesis advisor) / Hill, Gary (Committee member) / Rogers, Rodney (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2016