Matching Items (5)
Filtering by

Clear all filters

150078-Thumbnail Image.png
Description
In 2010, a monthly sampling regimen was established to examine ecological differences in Saguaro Lake and Lake Pleasant, two Central Arizona reservoirs. Lake Pleasant is relatively deep and clear, while Saguaro Lake is relatively shallow and turbid. Preliminary results indicated that phytoplankton biomass was greater by an order of magnitude

In 2010, a monthly sampling regimen was established to examine ecological differences in Saguaro Lake and Lake Pleasant, two Central Arizona reservoirs. Lake Pleasant is relatively deep and clear, while Saguaro Lake is relatively shallow and turbid. Preliminary results indicated that phytoplankton biomass was greater by an order of magnitude in Saguaro Lake, and that community structure differed. The purpose of this investigation was to determine why the reservoirs are different, and focused on physical characteristics of the water column, nutrient concentration, community structure of phytoplankton and zooplankton, and trophic cascades induced by fish populations. I formulated the following hypotheses: 1) Top-down control varies between the two reservoirs. The presence of piscivore fish in Lake Pleasant results in high grazer and low primary producer biomass through trophic cascades. Conversely, Saguaro Lake is controlled from the bottom-up. This hypothesis was tested through monthly analysis of zooplankton and phytoplankton communities in each reservoir. Analyses of the nutritional value of phytoplankton and DNA based molecular prey preference of zooplankton provided insight on trophic interactions between phytoplankton and zooplankton. Data from the Arizona Game and Fish Department (AZGFD) provided information on the fish communities of the two reservoirs. 2) Nutrient loads differ for each reservoir. Greater nutrient concentrations yield greater primary producer biomass; I hypothesize that Saguaro Lake is more eutrophic, while Lake Pleasant is more oligotrophic. Lake Pleasant had a larger zooplankton abundance and biomass, a larger piscivore fish community, and smaller phytoplankton abundance compared to Saguaro Lake. Thus, I conclude that Lake Pleasant was controlled top-down by the large piscivore fish population and Saguaro Lake was controlled from the bottom-up by the nutrient load in the reservoir. Hypothesis 2 stated that Saguaro Lake contains more nutrients than Lake Pleasant. However, Lake Pleasant had higher concentrations of dissolved nitrogen and phosphorus than Saguaro Lake. Additionally, an extended period of low dissolved N:P ratios in Saguaro Lake indicated N limitation, favoring dominance of N-fixing filamentous cyanobacteria in the phytoplankton community in that reservoir.
ContributorsSawyer, Tyler R (Author) / Neuer, Susanne (Thesis advisor) / Childers, Daniel L. (Committee member) / Sommerfeld, Milton (Committee member) / Arizona State University (Publisher)
Created2011
137132-Thumbnail Image.png
Description
It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying

It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying mechanisms are not well-known. Previous work has suggested that the crustacean zooplankter Daphnia reduces its feeding rates on phosphorus-rich food, causing low growth due to insufficient C (energy) intake. To test for this mechanism, feeding rates of Daphnia magna on algae (Scenedesmus acutus) differing in C:P ratio (P content) were determined. Overall, there was a significant difference among all treatments for feeding rate (p < 0.05) with generally higher feeding rates on P-rich algae. These data indicate that both high and low food C:P ratio do affect Daphnia feeding rate but are in contradiction with previous work that showed that P-rich food led to strong reductions in feeding rate. Additional experiments are needed to gain further insights.
ContributorsSchimpp, Sarah Ann (Author) / Elser, James (Thesis director) / Neuer, Susanne (Committee member) / Peace, Angela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
154893-Thumbnail Image.png
Description
Microzooplankton, mainly heterotrophic unicellular eukaryotes (protists), play an important role in the cycling of nutrients and carbon in the sunlit (euphotic) zone of the world’s oceans. Few studies have investigated the microzooplankton communities in oligotrophic (low-nutrient) oceans, such as the Sargasso Sea. In this study, I investigate the seasonal and

Microzooplankton, mainly heterotrophic unicellular eukaryotes (protists), play an important role in the cycling of nutrients and carbon in the sunlit (euphotic) zone of the world’s oceans. Few studies have investigated the microzooplankton communities in oligotrophic (low-nutrient) oceans, such as the Sargasso Sea. In this study, I investigate the seasonal and interannual dynamics of the heterotrophic protists, particularly the nanoflagellate, dinoflagellate, and ciliate communities, at the Bermuda Atlantic Time Series site and surrounding areas in the Sargasso Sea. In addition, I test the hypotheses that the community is controlled though bottom-up and top-down processes. To evaluate the bottom-up hypothesis, that the protists are controlled by prey availability, I test whether the protist abundance co-varies with the abundance of potential prey groups. Predation experiments with zooplankton were conducted and analyzed to test top-down control on the protists. I found distinguishable trends in biomass of the different protist groups between years and seasons. Nanoflagellates and dinoflagellates had higher biomass during the summer (28 ± 5 mgC/m2 and 44 ± 21 mgC/m2) than during the winter (17 ± 8 mgC/m2 and 30 ± 11 mgC/m2). Ciliates displayed the opposite trend with a higher average biomass in the winter (15 ± 9 mgC/m2) than in summer (5 ± 2 mgC/m2). In testing my bottom-up hypothesis, I found weak but significant positive grazer/prey relationships that indicate that nanoflagellates graze on picophytoplankton in winter and on the pico-cyanobacterium Prochlorococcus in summer. I found evidence that ciliates graze on Synechococcus in winter. I found weak but significant negative correlation between dinoflagellates and Prochlorococcus in summer. The predation experiments testing the top-down hypothesis did not show a clear top-down control, yet other studies in the region carried out during our investigation period support predation of the protists by the zooplankton. Overall, my results suggest a combination of bottom-up and top-down controls on these heterotrophic protists, however, further investigation is necessary to reveal the detailed trophic dynamics of these communities.
ContributorsWolverton, Megan (Author) / Neuer, Susanne (Thesis advisor) / Hartnett, Hillary (Committee member) / Elser, James (Committee member) / Arizona State University (Publisher)
Created2016
168445-Thumbnail Image.png
Description
The efficiency of the ocean’s biological carbon pump is mediated by fast-sinking particles that quickly settle out of the euphotic zone. These particles are conventionally associated with micro- (> 20 µm) sized diatoms and coccolithophorids, thought to efficiently transport carbon to depth owing to their dense mineral structures, while pico-

The efficiency of the ocean’s biological carbon pump is mediated by fast-sinking particles that quickly settle out of the euphotic zone. These particles are conventionally associated with micro- (> 20 µm) sized diatoms and coccolithophorids, thought to efficiently transport carbon to depth owing to their dense mineral structures, while pico- (< 2 µm) and nanophytoplankton (2-20 µm) are considered to contribute negligibly due to their small size and low sinking speed. Despite burgeoning evidence of their export, the mechanisms behind it remain poorly understood. The objective of this dissertation is to acquire a mechanistic understanding of the contribution of pico- and nanophytoplankton to particle fluxes. I tested the hypotheses that pico- and nanophytoplankton may be exported via the following pathways: 1) physical aggregation due to the production of sticky Transparent Exopolymeric Particles (TEP), mediated by interactions with heterotrophic bacteria, 2) attachment to lithogenic minerals, and 3) repackaging by zooplankton. I found that despite the traditional view of being too small to sink, pico- and nanophytoplankton form aggregates rich in TEP, allowing cells to scavenge lithogenic minerals and thus increase their effective size and density. I discovered that interactions with heterotrophic bacteria were significant in mediating the process of aggregation by influencing the production and/or the composition of the phytoplankton-derived TEP. Bacteria differentially influenced aggregation and TEP production; some species enhanced aggregation without affecting TEP production, and vice-versa. Finally, by determining the microbial composition of sinking particles in an open-ocean site, I found pico- and nanophytoplankton significantly associated with particles sourced from crustaceous zooplankton, suggesting that their export is largely mediated by mesozooplankton. Overall, I show that the hypothesized mechanisms of pico- and nanophytoplankton export are not mutually exclusive, but instead occur subsequently. Given the right conditions for their aggregation in the natural environment, such as interactions with aggregation-enhancing heterotrophic bacteria and/or the presence of lithogenic minerals, their cells and aggregates can escape remineralization within the euphotic zone, and thus be susceptible to grazing by mesozooplankton export within fecal pellets. The results of this dissertation provide a mechanistic framework for the contribution of pico- and nanophytoplankton to ocean particle fluxes.
ContributorsCruz, Bianca Nahir (Author) / Neuer, Susanne (Thesis advisor) / Lomas, Michael W (Committee member) / Passow, Uta (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / Arizona State University (Publisher)
Created2021
171761-Thumbnail Image.png
Description
The oceanic biological carbon pump is a key component of the global carbon cycle in which dissolved carbon dioxide is taken up by phytoplankton during photosynthesis, a fraction of which then sinks to depth and contributes to oceanic carbon storage. The small-celled phytoplankton (<5 µm) that dominate the phytoplankton community

The oceanic biological carbon pump is a key component of the global carbon cycle in which dissolved carbon dioxide is taken up by phytoplankton during photosynthesis, a fraction of which then sinks to depth and contributes to oceanic carbon storage. The small-celled phytoplankton (<5 µm) that dominate the phytoplankton community in oligotrophic oceans have traditionally been viewed as contributing little to export production due to their small size. However, recent studies have shown that the picocyanobacterium Synechococcus produces transparent exopolymer particles (TEP), the sticky matrix of marine aggregates, and forms abundant microaggregates (5-60 µm), which is enhanced under nutrient limited growth conditions. Whether other small phytoplankton species exude TEP and form microaggregates, and if these are enhanced under growth-limiting conditions remains to be investigated. This study aims to analyze how nutrient limitation affects TEP production and microaggregate formation of species that are found to be associated with sinking particles in the Sargasso Sea. The pico-cyanobacterium Prochlorococcus marinus (0.8 µm), the nano-diatom Minutocellus polymorphus (2 µm), and the pico-prasinophyte Ostreococcus lucimarinus (0.6 µm) were grown in axenic batch culture experiments under nutrient replete and limited conditions. It was hypothesized that phytoplankton subject to nutrient limitation will aggregate more than those under replete conditions due to an increased exudation of TEP and that Minutocellus would produce the most TEP and microaggregates while Prochlorococcus would produce the least TEP and microaggregates of the three phytoplankton groups. As hypothesized, nutrient limitation increased TEP concentration in all three species, however they were only significant in nitrogen-limited treatments of Prochlorococcus as well as nitrogen- and phosphorus-limited treatments of Minutocellus. Formation of microaggregates was significantly enhanced in Minutocellus and Ostreococcus cultures in distinct microaggregate size ranges. Minutocellus produced the most TEP per cell and aggregated at higher volume concentrations compared to Prochlorococcus and Ostreococcus. Surprisingly, Ostreococcus produced more TEP than Prochlorococcus and Minutocellus per unit cell volume. These findings show for the first time how nutrient limited conditions enhance TEP production and microaggregation of Prochlorococcus, Minutocellus, and Ostreococcus, providing a mechanism for their incorporation into larger, sinking particles and contribution to export production in oligotrophic oceans.
ContributorsShurtleff, Catrina (Author) / Neuer, Susanne (Thesis advisor) / Lomas, Michael W. (Committee member) / Garcia-Pichel, Ferran (Committee member) / Arizona State University (Publisher)
Created2022