Matching Items (20)
Filtering by

Clear all filters

152422-Thumbnail Image.png
Description
With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems since systems that are not compliant with security requirements may

With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems since systems that are not compliant with security requirements may lead adversaries to access critical information by circumventing security practices. In order to ensure security, considerable efforts have been spent to develop security regulations by facilitating security best-practices. Applying shared security standards to the system is critical to understand vulnerabilities and prevent well-known threats from exploiting vulnerabilities. However, many end users tend to change configurations of their systems without paying attention to the security. Hence, it is not straightforward to protect systems from being changed by unconscious users in a timely manner. Detecting the installation of harmful applications is not sufficient since attackers may exploit risky software as well as commonly used software. In addition, checking the assurance of security configurations periodically is disadvantageous in terms of time and cost due to zero-day attacks and the timing attacks that can leverage the window between each security checks. Therefore, event-driven monitoring approach is critical to continuously assess security of a target system without ignoring a particular window between security checks and lessen the burden of exhausted task to inspect the entire configurations in the system. Furthermore, the system should be able to generate a vulnerability report for any change initiated by a user if such changes refer to the requirements in the standards and turn out to be vulnerable. Assessing various systems in distributed environments also requires to consistently applying standards to each environment. Such a uniformed consistent assessment is important because the way of assessment approach for detecting security vulnerabilities may vary across applications and operating systems. In this thesis, I introduce an automated event-driven security assessment framework to overcome and accommodate the aforementioned issues. I also discuss the implementation details that are based on the commercial-off-the-self technologies and testbed being established to evaluate approach. Besides, I describe evaluation results that demonstrate the effectiveness and practicality of the approaches.
ContributorsSeo, Jeong-Jin (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Lee, Joohyung (Committee member) / Arizona State University (Publisher)
Created2014
152590-Thumbnail Image.png
Description
Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost

Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost in handling breaches for security architects and security engineers. The process of security testing which involves creating tests that effectively examine vulnerabilities is a challenging task. Role-Based Access Control (RBAC) has been widely adopted to support fine-grained access control. However, in practice, due to its complexity including role management, role hierarchy with hundreds of roles, and their associated privileges and users, systematically testing RBAC systems is crucial to ensure the security in various domains ranging from cyber-infrastructure to mission-critical applications. In this thesis, we introduce i) a security testing technique for RBAC systems considering the principle of maximum privileges, the structure of the role hierarchy, and a new security test coverage criterion; ii) a MTBDD (Multi-Terminal Binary Decision Diagram) based representation of RBAC security policy including RHMTBDD (Role Hierarchy MTBDD) to efficiently generate effective positive and negative security test cases; and iii) a security testing framework which takes an XACML-based RBAC security policy as an input, parses it into a RHMTBDD representation and then generates positive and negative test cases. We also demonstrate the efficacy of our approach through case studies.
ContributorsGupta, Poonam (Author) / Ahn, Gail-Joon (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2014
153033-Thumbnail Image.png
Description
Coarse Grain Reconfigurable Arrays (CGRAs) are promising accelerators capable of

achieving high performance at low power consumption. While CGRAs can efficiently

accelerate loop kernels, accelerating loops with control flow (loops with if-then-else

structures) is quite challenging. Techniques that handle control flow execution in

CGRAs generally use predication. Such techniques execute both branches of an

if-then-else

Coarse Grain Reconfigurable Arrays (CGRAs) are promising accelerators capable of

achieving high performance at low power consumption. While CGRAs can efficiently

accelerate loop kernels, accelerating loops with control flow (loops with if-then-else

structures) is quite challenging. Techniques that handle control flow execution in

CGRAs generally use predication. Such techniques execute both branches of an

if-then-else structure and select outcome of either branch to commit based on the

result of the conditional. This results in poor utilization of CGRA s computational

resources. Dual-issue scheme which is the state of the art technique for control flow

fetches instructions from both paths of the branch and selects one to execute at

runtime based on the result of the conditional. This technique has an overhead in

instruction fetch bandwidth. In this thesis, to improve performance of control flow

execution in CGRAs, I propose a solution in which the result of the conditional

expression that decides the branch outcome is communicated to the instruction fetch

unit to selectively issue instructions from the path taken by the branch at run time.

Experimental results show that my solution can achieve 34.6% better performance

and 52.1% improvement in energy efficiency on an average compared to state of the

art dual issue scheme without imposing any overhead in instruction fetch bandwidth.
ContributorsRajendran Radhika, Shri Hari (Author) / Shrivastava, Aviral (Thesis advisor) / Christen, Jennifer Blain (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2014
153374-Thumbnail Image.png
Description
Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to

Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to unwarranted access from others. The recent study suggests that many personal attributes, including religious and political affiliations, sexual orientation, relationship status, age, and gender, are predictable using users' personal data from an OSN site. The majority of users want to remain socially active, and protect their personal data at the same time. This tension leads to a user's vulnerability, allowing privacy attacks which can cause physical and emotional distress to a user, sometimes with dire consequences. For example, stalkers can make use of personal information available on an OSN site to their personal gain. This dissertation aims to systematically study a user vulnerability against such privacy attacks.

A user vulnerability can be managed in three steps: (1) identifying, (2) measuring and (3) reducing a user vulnerability. Researchers have long been identifying vulnerabilities arising from user's personal data, including user names, demographic attributes, lists of friends, wall posts and associated interactions, multimedia data such as photos, audios and videos, and tagging of friends. Hence, this research first proposes a way to measure and reduce a user vulnerability to protect such personal data. This dissertation also proposes an algorithm to minimize a user's vulnerability while maximizing their social utility values.

To address these vulnerability concerns, social networking sites like Facebook usually let their users to adjust their profile settings so as to make some of their data invisible. However, users sometimes interact with others using unprotected posts (e.g., posts from a ``Facebook page\footnote{The term ''Facebook page`` refers to the page which are commonly dedicated for businesses, brands and organizations to share their stories and connect with people.}''). Such interactions help users to become more social and are publicly accessible to everyone. Thus, visibilities of these interactions are beyond the control of their profile settings. I explore such unprotected interactions so that users' are well aware of these new vulnerabilities and adopt measures to mitigate them further. In particular, {\em are users' personal attributes predictable using only the unprotected interactions}? To answer this question, I address a novel problem of predictability of users' personal attributes with unprotected interactions. The extreme sparsity patterns in users' unprotected interactions pose a serious challenge. Therefore, I approach to mitigating the data sparsity challenge by designing a novel attribute prediction framework using only the unprotected interactions. Experimental results on Facebook dataset demonstrates that the proposed framework can predict users' personal attributes.
ContributorsGundecha, Pritam S (Author) / Liu, Huan (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Ye, Jieping (Committee member) / Barbier, Geoffrey (Committee member) / Arizona State University (Publisher)
Created2015
156189-Thumbnail Image.png
Description
Static CMOS logic has remained the dominant design style of digital systems for

more than four decades due to its robustness and near zero standby current. Static

CMOS logic circuits consist of a network of combinational logic cells and clocked sequential

elements, such as latches and flip-flops that are used for sequencing computations

over

Static CMOS logic has remained the dominant design style of digital systems for

more than four decades due to its robustness and near zero standby current. Static

CMOS logic circuits consist of a network of combinational logic cells and clocked sequential

elements, such as latches and flip-flops that are used for sequencing computations

over time. The majority of the digital design techniques to reduce power, area, and

leakage over the past four decades have focused almost entirely on optimizing the

combinational logic. This work explores alternate architectures for the flip-flops for

improving the overall circuit performance, power and area. It consists of three main

sections.

First, is the design of a multi-input configurable flip-flop structure with embedded

logic. A conventional D-type flip-flop may be viewed as realizing an identity function,

in which the output is simply the value of the input sampled at the clock edge. In

contrast, the proposed multi-input flip-flop, named PNAND, can be configured to

realize one of a family of Boolean functions called threshold functions. In essence,

the PNAND is a circuit implementation of the well-known binary perceptron. Unlike

other reconfigurable circuits, a PNAND can be configured by simply changing the

assignment of signals to its inputs. Using a standard cell library of such gates, a technology

mapping algorithm can be applied to transform a given netlist into one with

an optimal mixture of conventional logic gates and threshold gates. This approach

was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier

in 65nm LP technology. Simulation and chip measurements show more than 30%

improvement in dynamic power and more than 20% reduction in core area.

The functional yield of the PNAND reduces with geometry and voltage scaling.

The second part of this research investigates the use of two mechanisms to improve

the robustness of the PNAND circuit architecture. One is the use of forward and reverse body biases to change the device threshold and the other is the use of RRAM

devices for low voltage operation.

The third part of this research focused on the design of flip-flops with non-volatile

storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated

with both conventional D-flipflop and the PNAND circuits to implement non-volatile

logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of

system locally when a power interruption occurs. However, manufacturing variations

in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading

to an overly pessimistic design and consequently, higher energy consumption. A

detailed analysis of the design trade-offs in the driver circuitry for performing backup

and restore, and a novel method to design the energy optimal driver for a given yield is

presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented,

in which the backup time is determined on a per-chip basis, resulting in minimizing

the energy wastage and satisfying the yield constraint. To achieve a yield of 98%,

the conventional approach would have to expend nearly 5X more energy than the

minimum required, whereas the proposed tunable approach expends only 26% more

energy than the minimum. A non-volatile threshold gate architecture NV-TLFF are

designed with the same backup and restore circuitry in 65nm technology. The embedded

logic in NV-TLFF compensates performance overhead of NVL. This leads to the

possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-and-

accumulate (MAC) unit is designed to demonstrate the performance benefits of the

proposed architecture. Based on the results of HSPICE simulations, the MAC circuit

with the proposed NV-TLFF cells is shown to consume at least 20% less power and

area as compared to the circuit designed with conventional DFFs, without sacrificing

any performance.
ContributorsYang, Jinghua (Author) / Vrudhula, Sarma (Thesis advisor) / Barnaby, Hugh (Committee member) / Cao, Yu (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2018
156622-Thumbnail Image.png
Description
Reasoning about the activities of cyber threat actors is critical to defend against cyber

attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult

to determine who the attacker is, what the desired goals are of the attacker, and how they will

carry out their attacks.

Reasoning about the activities of cyber threat actors is critical to defend against cyber

attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult

to determine who the attacker is, what the desired goals are of the attacker, and how they will

carry out their attacks. These three questions essentially entail understanding the attacker’s

use of deception, the capabilities available, and the intent of launching the attack. These

three issues are highly inter-related. If an adversary can hide their intent, they can better

deceive a defender. If an adversary’s capabilities are not well understood, then determining

what their goals are becomes difficult as the defender is uncertain if they have the necessary

tools to accomplish them. However, the understanding of these aspects are also mutually

supportive. If we have a clear picture of capabilities, intent can better be deciphered. If we

understand intent and capabilities, a defender may be able to see through deception schemes.

In this dissertation, I present three pieces of work to tackle these questions to obtain

a better understanding of cyber threats. First, we introduce a new reasoning framework

to address deception. We evaluate the framework by building a dataset from DEFCON

capture-the-flag exercise to identify the person or group responsible for a cyber attack.

We demonstrate that the framework not only handles cases of deception but also provides

transparent decision making in identifying the threat actor. The second task uses a cognitive

learning model to determine the intent – goals of the threat actor on the target system.

The third task looks at understanding the capabilities of threat actors to target systems by

identifying at-risk systems from hacker discussions on darkweb websites. To achieve this

task we gather discussions from more than 300 darkweb websites relating to malicious

hacking.
ContributorsNunes, Eric (Author) / Shakarian, Paulo (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2018
156822-Thumbnail Image.png
Description
Hardware implementation of deep neural networks is earning significant importance nowadays. Deep neural networks are mathematical models that use learning algorithms inspired by the brain. Numerous deep learning algorithms such as multi-layer perceptrons (MLP) have demonstrated human-level recognition accuracy in image and speech classification tasks. Multiple layers of processing elements

Hardware implementation of deep neural networks is earning significant importance nowadays. Deep neural networks are mathematical models that use learning algorithms inspired by the brain. Numerous deep learning algorithms such as multi-layer perceptrons (MLP) have demonstrated human-level recognition accuracy in image and speech classification tasks. Multiple layers of processing elements called neurons with several connections between them called synapses are used to build these networks. Hence, it involves operations that exhibit a high level of parallelism making it computationally and memory intensive. Constrained by computing resources and memory, most of the applications require a neural network which utilizes less energy. Energy efficient implementation of these computationally intense algorithms on neuromorphic hardware demands a lot of architectural optimizations. One of these optimizations would be the reduction in the network size using compression and several studies investigated compression by introducing element-wise or row-/column-/block-wise sparsity via pruning and regularization. Additionally, numerous recent works have concentrated on reducing the precision of activations and weights with some reducing to a single bit. However, combining various sparsity structures with binarized or very-low-precision (2-3 bit) neural networks have not been comprehensively explored. Output activations in these deep neural network algorithms are habitually non-binary making it difficult to exploit sparsity. On the other hand, biologically realistic models like spiking neural networks (SNN) closely mimic the operations in biological nervous systems and explore new avenues for brain-like cognitive computing. These networks deal with binary spikes, and they can exploit the input-dependent sparsity or redundancy to dynamically scale the amount of computation in turn leading to energy-efficient hardware implementation. This work discusses configurable spiking neuromorphic architecture that supports multiple hidden layers exploiting hardware reuse. It also presents design techniques for minimum-area/-energy DNN hardware with minimal degradation in accuracy. Area, performance and energy results of these DNN and SNN hardware is reported for the MNIST dataset. The Neuromorphic hardware designed for SNN algorithm in 28nm CMOS demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4 - 773 (nJ) per classification). The optimized DNN hardware designed in 40nm CMOS that combines 8X structured compression and 3-bit weight precision showed 98.4% accuracy at 33 (nJ) per classification.
ContributorsKolala Venkataramanaiah, Shreyas (Author) / Seo, Jae-Sun (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2018
156845-Thumbnail Image.png
Description
The rapid improvement in computation capability has made deep convolutional neural networks (CNNs) a great success in recent years on many computer vision tasks with significantly improved accuracy. During the inference phase, many applications demand low latency processing of one image with strict power consumption requirement, which reduces the efficiency

The rapid improvement in computation capability has made deep convolutional neural networks (CNNs) a great success in recent years on many computer vision tasks with significantly improved accuracy. During the inference phase, many applications demand low latency processing of one image with strict power consumption requirement, which reduces the efficiency of GPU and other general-purpose platform, bringing opportunities for specific acceleration hardware, e.g. FPGA, by customizing the digital circuit specific for the deep learning algorithm inference. However, deploying CNNs on portable and embedded systems is still challenging due to large data volume, intensive computation, varying algorithm structures, and frequent memory accesses. This dissertation proposes a complete design methodology and framework to accelerate the inference process of various CNN algorithms on FPGA hardware with high performance, efficiency and flexibility.

As convolution contributes most operations in CNNs, the convolution acceleration scheme significantly affects the efficiency and performance of a hardware CNN accelerator. Convolution involves multiply and accumulate (MAC) operations with four levels of loops. Without fully studying the convolution loop optimization before the hardware design phase, the resulting accelerator can hardly exploit the data reuse and manage data movement efficiently. This work overcomes these barriers by quantitatively analyzing and optimizing the design objectives (e.g. memory access) of the CNN accelerator based on multiple design variables. An efficient dataflow and hardware architecture of CNN acceleration are proposed to minimize the data communication while maximizing the resource utilization to achieve high performance.

Although great performance and efficiency can be achieved by customizing the FPGA hardware for each CNN model, significant efforts and expertise are required leading to long development time, which makes it difficult to catch up with the rapid development of CNN algorithms. In this work, we present an RTL-level CNN compiler that automatically generates customized FPGA hardware for the inference tasks of various CNNs, in order to enable high-level fast prototyping of CNNs from software to FPGA and still keep the benefits of low-level hardware optimization. First, a general-purpose library of RTL modules is developed to model different operations at each layer. The integration and dataflow of physical modules are predefined in the top-level system template and reconfigured during compilation for a given CNN algorithm. The runtime control of layer-by-layer sequential computation is managed by the proposed execution schedule so that even highly irregular and complex network topology, e.g. GoogLeNet and ResNet, can be compiled. The proposed methodology is demonstrated with various CNN algorithms, e.g. NiN, VGG, GoogLeNet and ResNet, on two different standalone FPGAs achieving state-of-the art performance.

Based on the optimized acceleration strategy, there are still a lot of design options, e.g. the degree and dimension of computation parallelism, the size of on-chip buffers, and the external memory bandwidth, which impact the utilization of computation resources and data communication efficiency, and finally affect the performance and energy consumption of the accelerator. The large design space of the accelerator makes it impractical to explore the optimal design choice during the real implementation phase. Therefore, a performance model is proposed in this work to quantitatively estimate the accelerator performance and resource utilization. By this means, the performance bottleneck and design bound can be identified and the optimal design option can be explored early in the design phase.
ContributorsMa, Yufei (Author) / Vrudhula, Sarma (Thesis advisor) / Seo, Jae-Sun (Thesis advisor) / Cao, Yu (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2018
154567-Thumbnail Image.png
Description
With the software-defined networking trend growing, several network virtualization controllers have been developed in recent years. These controllers, also called network hypervisors, attempt to manage physical SDN based networks so that multiple tenants can safely share the same forwarding plane hardware without risk of being affected by or affecting other

With the software-defined networking trend growing, several network virtualization controllers have been developed in recent years. These controllers, also called network hypervisors, attempt to manage physical SDN based networks so that multiple tenants can safely share the same forwarding plane hardware without risk of being affected by or affecting other tenants. However, many areas remain unexplored by current network hypervisor implementations. This thesis presents and evaluates some of the features offered by network hypervisors, such as full header space availability, isolation, and transparent traffic forwarding capabilities for tenants. Flow setup time and throughput are also measured and compared among different network hypervisors. Three different network hypervisors are evaluated: FlowVisor, VeRTIGO and OpenVirteX. These virtualization tools are assessed with experiments conducted on three different testbeds: an emulated Mininet scenario, a physical single-switch testbed, and also a remote GENI testbed. The results indicate that network hypervisors bring SDN flexibility to network virtualization, making it easier for network administrators to define with precision how the network is sliced and divided among tenants. This increased flexibility, however, may come with the cost of decreased performance, and also brings additional risks of interoperability due to a lack of standardization of virtualization methods.
ContributorsStall Rechia, Felipe (Author) / Syrotiuk, Violet R. (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2016
155244-Thumbnail Image.png
Description
Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile

Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing.

This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, the first part develops a novel scheme to enable a new way of trust relationship called spatiotemporal matching in a privacy-preserving and efficient fashion. To enhance the secure communication among mobile users, the second part proposes a game-theoretical framework to stimulate the cooperative shared secret key generation among mobile users. The third and fourth parts investigate the security and privacy issues in mobile crowdsourcing. In particular, the third part presents a secure and privacy-preserving mobile crowdsourcing system which strikes a good balance among object security, user privacy, and system efficiency. The fourth part demonstrates a differentially private distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth part proposes VISIBLE, a novel video-assisted keystroke inference framework that allows an attacker to infer a tablet user's typed inputs on the touchscreen by recording and analyzing the video of the tablet backside during the user's input process. Besides, some potential countermeasures to this attack are also discussed. This dissertation sheds the light on the state-of-the-art security and privacy issues in mobile computing.
ContributorsSun, Jingchao (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Ying, Lei (Committee member) / Ahn, Gail-Joon (Committee member) / Arizona State University (Publisher)
Created2017