Matching Items (12)
Filtering by

Clear all filters

151946-Thumbnail Image.png
Description
This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The

This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The protons are introduced into a cross-linked polyphospazene rubber by the superacid HOTf, which is absorbed by partial protonation of the backbone nitrogens. The decoupling of conductivity from segmental relaxation times assessed by comparison with conductivity relaxation times amounts to some 10 orders of magnitude, but it cannot be concluded whether it is purely protonic or due equally to a mobile OTf- or H(OTf)2-; component. The second electrolyte is built on the success of phosphoric acid as a fuel cell electrolyte, by designing a variant of the molecular acid that has increased temperature range without sacrifice of high temperature conductivity or open circuit voltage. The success is achieved by introduction of a hybrid component, based on silicon coordination of phosphate groups, which prevents decomposition or water loss to 250ºC, while enhancing free proton motion. Conductivity studies are reported to 285ºC and full H2/O2 cell polarization curves to 226ºC. The current efficiency reported here (current density per unit of fuel supplied per sec) is the highest on record. A power density of 184 (mW.cm-2) is achieved at 226ºC with hydrogen flow rate of 4.1 ml/minute. The third electrolyte is a novel type of ionic liquids which is made by addition of a super strong Brønsted acid to a super weak Brønsted base. Here it is shown that by allowing the proton of transient HAlCl4, to relocate on a very weak base that is also stable to superacids, we can create an anhydrous ionic liquid, itself a superacid, in which the proton is so loosely bound that at least 50% of the electrical conductivity is due to the motion of free protons. The protic ionic liquids (PILs) described, pentafluoropyridinium tetrachloroaluminate and 5-chloro-2,4,6-trifluoropyrimidinium tetrachloroaluminate, might be the forerunner of a class of materials in which the proton plasma state can be approached.
ContributorsAnsari, Younes (Author) / Angell, Charles A (Thesis advisor) / Richert, Ranko (Committee member) / Chizmeshya, Andrew (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2013
153168-Thumbnail Image.png
Description
Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is the cost of the catalyst material in manufacturing the fuel cell. In the present study, the major focus in PEMFCs

Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is the cost of the catalyst material in manufacturing the fuel cell. In the present study, the major focus in PEMFCs has been in reduction of the cost of the catalyst material using graphene, thin film coated and Organometallic Molecular catalysts. The present research is focused on improving the durability and active surface area of the catalyst materials with low platinum loading using nanomaterials to reduce the effective cost of the fuel cells. Performance, Electrochemical impedance spectroscopy, oxygen reduction and surface morphology studies were performed on each manufactured material.

Alkaline fuel cells with anion exchange membrane get immense attention due to very attractive opportunity of using non-noble metal catalyst materials. In the present study, cathodes with various organometallic cathode materials were prepared and investigated for alkaline membrane fuel cells for oxygen reduction and performance studies. Co and Fe Phthalocyanine catalyst materials were deposited on multi-walled carbon nanotubes (MWCNTs) support materials. Membrane Electrode Assemblies (MEAs) were fabricated using Tokuyama Membrane (#A901) with cathodes containing Co and Fe Phthalocyanine/MWCNTs and Pt/C anodes. Fuel cell performance of the MEAs was examined.
ContributorsKolli, Sri Harsha (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Nam, Changho (Committee member) / Peng, Xihong (Committee member) / Arizona State University (Publisher)
Created2014
153179-Thumbnail Image.png
Description
This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of

This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy.

Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC.

Battery testing based on [EMI+][FeCl4-] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4+][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements.

Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases producing water vapor. Principle advantage is high-energy efficiency of up to 70% in contrast to an internal combustion engine <40%. Nafion-based fuel cells are prone to carbon monoxide catalytic poisoning and polymer membrane degradation unless heavily hydrated under cell-pressurization. This novel "SiPOH" solid-electrolytic gel (originally liquid-state) operated in the fuel cell at 121oC yielding current and power densities high as 731mAcm-2 and 345mWcm-2, respectively. Enhanced proton conduction significantly increased H2 fuel efficiency to 89.7% utilizing only 3.1mlmin-1 under dry, unpressurized testing conditions. All these energy devices aforementioned evidently have future promise; therefore in early developmental stages.
ContributorsTucker, Telpriore G (Author) / Angell, Charles A. (Committee member) / Moore, Ana (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2014
150314-Thumbnail Image.png
Description
Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa

Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2*-, which is then rapidly protonated by the pIL cation forming the perhydroxyl radical, HO2*. The perhydroxyl radical is further reduced to peroxidate (HO2-) and hydrogen peroxide in proportions in accordance with their pKa. The reaction does not proceed beyond this point due to the adsorption of the conjugate base triethylammine interfering with the disproportionation of hydrogen peroxide. This work demonstrates that this mechanism is consistent across Pt, Au, Pd, and Ag electrodes. Two related sets of experiments were performed in the inherently aprotic ionic liquid 1-butyl-2,3-dimethylimidazolium triflate (C4dMImTf). The first involved the titration of acidic species of varying aqueous pKa into the IL while monitoring the extent of oxygen reduction as a function of pKa and potential on Pt and glassy carbon (GC) electrodes. These experiments confirmed the greater propensity of Pt to reduce oxygen by its immediate and abrupt transition from one electron reduction to four electron reduction, while oxygen reduction on GC gradually approaches four electron reduction as the potentials were driven more cathodic. The potential at which oxygen reduction initiates shows general agreement with the Nernst equation and the acid's tabulated aqueous pKa value, however at the extremely acidic end, a small deviation is observed. The second set of experiments in C4dMImTf solicited water as the proton donor for oxygen reduction in an approximation of the aqueous alkaline case. The water content was varied between extremely dry (<0.1 mol% H2O) and saturated (approximately 15.8 mol% H2O}). As the water content increased so too did the extent of oxygen reduction eventually approach two electrons on both Pt and GC. However, additional water led to a linear increase in the Tafel slope under enhanced mass transport conditions up to the point of 10 mol% water. This inhibition of oxygen adsorption is the result of the interaction between superoxide and water and more specifically is proposed to be associated with decomposition of theC4dMIm+ cation by hydroxide at the elevated temperatures required for the experiment. Oxygen reduction on both Pt and GC follows Nernstian behavior as the water content is increased. Separate mechanisms for oxygen reduction on Pt and GC are proposed based on the nature of the Nernstian response in these systems.
ContributorsZeller, Robert August (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
Description
This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project

This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project explores the evolution of bulk stress that occurs during intercalation (extraction) of lithium (Li) and formation of a solid electrolyte interphase during electrochemical reduction (oxidation) of Li at graphitic electrodes. Electrocapillarity measurements have shown that hydrogen and hydroxide adsorption are compressive on Pt{111}, Ru/Pt{111}, and Ru{0001}. The adsorption-induced surface stresses correlate strongly with adsorption charge. Electrocatalytic oxidation of CO on Pt{111} and Ru/Pt{111} gives a tensile surface stress. A numerical method was developed to separate both current and stress into background and active components. Applying this model to the CO oxidation signal on Ru{0001} gives a tensile surface stress and elucidates the rate limiting steps on all three electrodes. The enhanced catalysis of Ru/Pt{111} is confirmed to be bi-functional in nature: Ru provides adsorbed hydroxide to Pt allowing for rapid CO oxidation. The majority of Li-ion batteries have anodes consisting of graphite particles with polyvinylidene fluoride (PVDF) as binder. Intercalation of Li into graphite occurs in stages and produces anisotropic strains. As batteries have a fixed size and shape these strains are converted into mechanical stresses. Conventionally staging phenomena has been observed with X-ray diffraction and collaborated electrochemically with the potential. Work herein shows that staging is also clearly observed in stress. The Li staging potentials as measured by differential chronopotentiometry and stress are nearly identical. Relative peak heights of Li staging, as measured by these two techniques, are similar during reduction, but differ during oxidation due to non-linear stress relaxation phenomena. This stress relaxation appears to be due to homogenization of Li within graphite particles rather than viscous flow of the binder. The first Li reduction wave occurs simultaneously with formation of a passivating layer known as the solid electrolyte interphase (SEI). Preliminary experiments have shown the stress of SEI formation to be tensile (~+1.5 MPa).
ContributorsMickelson, Lawrence (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Buttry, Daniel (Committee member) / Venables, John (Committee member) / Arizona State University (Publisher)
Created2011
150825-Thumbnail Image.png
Description
Low temperature fuel cells are very attractive energy conversion technology for automotive applications due to their qualities of being clean, quiet, efficient and good peak power densities. However, due to high cost and limited durability and reliability, commercialization of this technology has not been possible as yet. The high fuel

Low temperature fuel cells are very attractive energy conversion technology for automotive applications due to their qualities of being clean, quiet, efficient and good peak power densities. However, due to high cost and limited durability and reliability, commercialization of this technology has not been possible as yet. The high fuel cell cost is mostly due to the expensive noble catalyst Pt. Alkaline fuel cell (AFC) systems, have potential to make use of non-noble catalysts and thus, provides with a solution of overall lower cost. Therefore, this issue has been addressed in this thesis work. Hydrogen-oxygen fuel cells using an alkaline anion exchange membrane were prepared and evaluated. Various non-platinum catalyst materials were investigated by fabricating membrane-electrode assemblies (MEAs) using Tokuyama membrane (# A201) and compared with commercial noble metal catalysts. Co and Fe phthalocyanine catalyst materials were synthesized using multi-walled carbon nanotubes (MWCNTs) as support materials. X-ray photoelectron spectroscopic study was conducted in order to examine the surface composition. The electroreduction of oxygen has been investigated on Fe phthalocyanine/MWCNT, Co phthalocyanine/MWCNT and commercial Pt/C catalysts. The oxygen reduction reaction kinetics on these catalyst materials were evaluated using rotating disk electrodes in 0.1 M KOH solution and the current density values were consistently higher for Co phthalocyanine based electrodes compared to Fe phthalocyanine. The fuel cell performance of the MEAs with Co and Fe phthalocyanines and Tanaka Kikinzoku Kogyo Pt/C cathode catalysts were 100, 60 and 120 mW cm-2 using H22 and O2 gases. This thesis also includes work on synthesizing nitrogen doped MWCNTs using post-doping and In-Situ methods. Post-doped N-MWNCTs were prepared through heat treatment with NH4OH as nitrogen source. Characterization was done through fuel cell testing, which gave peak power density ~40mW.cm-2. For In-Situ N-MWCT, pyridine was used as nitrogen source. The sample characterization was done using Raman spectroscopy and RBS, which showed the presence ~3 at.% of nitrogen on the carbon surface.
ContributorsShah, QuratulAin Jawed (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Tamizhmani, Govindasamy (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2012
154623-Thumbnail Image.png
Description
Hydrogen fuel cells have been previously investigated as a viable replacement to traditional gas turbine auxiliary power unit onboard fixed wing commercial jets. However, so far no study has attempted to extend their applicability to rotary wing aircrafts. To aid in the advancement of such innovative technologies, a holistic technical

Hydrogen fuel cells have been previously investigated as a viable replacement to traditional gas turbine auxiliary power unit onboard fixed wing commercial jets. However, so far no study has attempted to extend their applicability to rotary wing aircrafts. To aid in the advancement of such innovative technologies, a holistic technical approach is required to ensure risk reduction and cost effectiveness throughout the product lifecycle. This paper will evaluate the feasibility of replacing a gas turbine auxiliary power unit on a helicopter with a direct hydrogen, air breathing, proton exchange membrane fuel cell, all while emphasizing a system engineering approach that utilize a specialized set of tools and artifacts.
ContributorsNesheiwat, Rod (Author) / Kannan, Arunachala M (Thesis advisor) / Nam, Changho (Committee member) / Mayyas, Abdel Ra'Ouf (Committee member) / Arizona State University (Publisher)
Created2016
155041-Thumbnail Image.png
Description
Plastic crystals as a class are of much interest in applications as solid state electrolytes for electrochemical energy conversion devices. A subclass exhibit very high protonic conductivity and its members have been investigated as possible fuel cell electrolytes, as first demonstrated by Haile’s group in 2001 with CsHSO4. To date

Plastic crystals as a class are of much interest in applications as solid state electrolytes for electrochemical energy conversion devices. A subclass exhibit very high protonic conductivity and its members have been investigated as possible fuel cell electrolytes, as first demonstrated by Haile’s group in 2001 with CsHSO4. To date these have been inorganic compounds with tetrahedral oxyanions carrying one or more protons, charge-balanced by large alkali cations. Above the rotator phase transition, the HXO4- anions re-orient at a rate dependent on temperature while the centers of mass remain ordered. The transition is accompanied by a conductivity "jump" (as much as four orders of magnitude, to ~ 10 mScm-1 in the now-classic case of CsHSO4) due to mobile protons. These superprotonic plastic crystals bring a “true solid state” alternative to polymer electrolytes, operating at mild temperatures (150-200ºC) without the requirement of humidification. This work describes a new class of solid acids based on silicon, which are of general interest. Its members have extraordinary conductivities, as high as 21.5 mS/cm at room temperature, orders of magnitude above any previous reported case. Three fuel cells are demonstrated, delivering current densities as high as 225 mA/cm2 at short-circuit at 130ºC in one example and 640 mA/cm2 at 87ºC in another. The new compounds are insoluble in water, and their remarkably high conductivities over a wide temperature range allow for lower temperature operations, thus reducing the risk of hydrogen sulfide formation and dehydration reactions. Additionally, plastic crystals have highly advantageous properties that permit their application as solid state electrolytes in lithium batteries. So far only doped materials have been presented. This work presents for the first time non-doped plastic crystals in which the lithium ions are integral part of the structure, as a solid state electrolyte. The new electrolytes have conductivities of 3 to 10 mS/cm at room temperature, and in one example maintain a highly conductive state at temperatures as low as -30oC. The malleability of the materials and single ion conducting properties make these materials highly interesting candidates as a novel class of solid state lithium conductors.
ContributorsKlein, Iolanda Santana (Author) / Angell, Charles A (Thesis advisor) / Buttry, Daniel A (Committee member) / Richert, Ranko (Committee member) / Arizona State University (Publisher)
Created2016
155055-Thumbnail Image.png
Description
As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and

As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight versus potential flight times. Combinations of the listed batteries, fuel cells, and storage tanks are plotted on the graph to evaluate various hybrid power system configurations.
ContributorsStrele, Thomas (Author) / Nam, Changho (Thesis advisor) / Kannan, Arunachalanadar M (Committee member) / Pollat, Scott L (Committee member) / Arizona State University (Publisher)
Created2016
155672-Thumbnail Image.png
Description
The greenhouse gases in the atmosphere have reached a highest level due to high number of vehicles. A Fuel Cell Hybrid Electric Vehicle (FCHEV) has zero greenhouse gas emissions compared to conventional ICE vehicles or Hybrid Electric Vehicles and hence is a better alternative. All Electric Vehicle (AEVs) have longer

The greenhouse gases in the atmosphere have reached a highest level due to high number of vehicles. A Fuel Cell Hybrid Electric Vehicle (FCHEV) has zero greenhouse gas emissions compared to conventional ICE vehicles or Hybrid Electric Vehicles and hence is a better alternative. All Electric Vehicle (AEVs) have longer charging time which is unfavorable. A fully charged battery gives less range compared to a FCHEV with a full hydrogen tank. So FCHEV has an advantage of a quick fuel up and more mileage than AEVs. A Proton Electron Membrane Fuel Cell (PEMFC) is the commonly used kind of fuel cell vehicles but it possesses slow current dynamics and hence not suitable to be the sole power source in a vehicle. Therefore, improving the transient power capabilities of fuel cell to satisfy the road load demand is critical.

This research studies integration of Ultra-Capacitor (UC) to FCHEV. The objective is to analyze the effect of integrating UCs on the transient response of FCHEV powertrain. UCs has higher power density which can overcome slow dynamics of fuel cell. A power management strategy utilizing peak power shaving strategy is implemented. The goal is to decrease power load on batteries and operate fuel cell stack in it’s most efficient region. Complete model to simulate the physical behavior of UC-Integrated FCHEV (UC-FCHEV) is developed using Matlab/SIMULINK. The fuel cell polarization curve is utilized to devise operating points of the fuel cell to maintain its operation at most efficient region. Results show reduction of hydrogen consumption in aggressive US06 drive cycle from 0.29 kg per drive cycle to 0.12 kg. The maximum charge/discharge battery current was reduced from 286 amperes to 110 amperes in US06 drive cycle. Results for the FUDS drive cycle show a reduction in fuel consumption from 0.18 kg to 0.05 kg in one drive cycle. This reduction in current increases the life of the battery since its protected from overcurrent. The SOC profile of the battery also shows that the battery is not discharged to its minimum threshold which increasing the health of the battery based on number of charge/discharge cycles.
ContributorsJethani, Puneet V. (Author) / Mayyas, Abdel (Thesis advisor) / Berman, Spring (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2017