Matching Items (17)

135272-Thumbnail Image.png

Characterizing Buffers to Maximize Peroxide Production in the Cathode Chamber of Microbial Fuel Cells

Description

Microbial fuel cells (MFCs) facilitate the conversion of organic matter to electrical current to make the total energy in black water treatment neutral or positive and produce hydrogen peroxide to

Microbial fuel cells (MFCs) facilitate the conversion of organic matter to electrical current to make the total energy in black water treatment neutral or positive and produce hydrogen peroxide to assist the reuse of gray water. This research focuses on wastewater treatment at the U.S. military forward operating bases (FOBs). FOBs experience significant challenges with their wastewater treatment due to their isolation and dangers in transporting waste water and fresh water to and from the bases. Even though it is theoretically favorable to produce power in a MFC while treating black water, producing H2O2 is more useful and practical because it is a powerful cleaning agent that can reduce odor, disinfect, and aid in the treatment of gray water. Various acid forms of buffers were tested in the anode and cathode chamber to determine if the pH would lower in the cathode chamber while maintaining H2O2 efficiency, as well as to determine ion diffusion from the anode to the cathode via the membrane. For the catholyte experiments, phosphate and bicarbonate were tested as buffers while sodium chloride was the control. These experiments determined that the two buffers did not lower the pH. It was seen that the phosphate buffer reduced the H2O2 efficiency significantly while still staying at a high pH, while the bicarbonate buffer had the same efficiency as the NaCl control. For the anolyte experiments, it was shown that there was no diffusion of the buffers or MFC media across the membrane that would cause a decrease in the H2O2 production efficiency.

Contributors

Agent

Created

Date Created
  • 2016-05

135377-Thumbnail Image.png

Practicality of the Convolutional Solution Method of the Polarization Estimation Inverse Problem for Solid Oxide Fuel Cells

Description

A specific species of the genus Geobacter exhibits useful electrical properties when processing a molecule often found in waste water. A team at ASU including Dr Cèsar Torres and Dr

A specific species of the genus Geobacter exhibits useful electrical properties when processing a molecule often found in waste water. A team at ASU including Dr Cèsar Torres and Dr Sudeep Popat used that species to create a special type of solid oxide fuel cell we refer to as a microbial fuel cell. Identification of possible chemical processes and properties of the reactions used by the Geobacter are investigated indirectly by taking measurements using Electrochemical Impedance Spectroscopy of the electrode-electrolyte interface of the microbial fuel cell to obtain the value of the fuel cell's complex impedance at specific frequencies. Investigation of the multiple polarization processes which give rise to measured impedance values is difficult to do directly and so examination of the distribution function of relaxation times (DRT) is considered instead. The DRT is related to the measured complex impedance values using a general, non-physical equivalent circuit model. That model is originally given in terms of a Fredholm integral equation with a non-square integrable kernel which makes the inverse problem of determining the DRT given the impedance measurements an ill-posed problem. The original integral equation is rewritten in terms of new variables into an equation relating the complex impedance to the convolution of a function based upon the original integral kernel and a related but separate distribution function which we call the convolutional distribution function. This new convolutional equation is solved by reducing the convolution to a pointwise product using the Fourier transform and then solving the inverse problem by pointwise division and application of a filter function (equivalent to regularization). The inverse Fourier transform is then taken to get the convolutional distribution function. In the literature the convolutional distribution function is then examined and certain values of a specific, less general equivalent circuit model are calculated from which aspects of the original chemical processes are derived. We attempted to instead directly determine the original DRT from the calculated convolutional distribution function. This method proved to be practically less useful due to certain values determined at the time of experiment which meant the original DRT could only be recovered in a window which would not normally contain the desired information for the original DRT. This limits any attempt to extend the solution for the convolutional distribution function to the original DRT. Further research may determine a method for interpreting the convolutional distribution function without an equivalent circuit model as is done with the regularization method used to solve directly for the original DRT.

Contributors

Agent

Created

Date Created
  • 2016-05

137115-Thumbnail Image.png

Direct Flame Solid Oxide Fuel Cells for Use in Remote Powering Applications

Description

In this Honors thesis, direct flame solid oxide fuel cells (DFFC) were considered for their feasibility in providing a means of power generation for remote powering needs. Also considered for

In this Honors thesis, direct flame solid oxide fuel cells (DFFC) were considered for their feasibility in providing a means of power generation for remote powering needs. Also considered for combined heat and fuel cell power cogeneration are thermoelectric cells (TEC). Among the major factors tested in this project for all cells were life time, thermal cycle/time based performance, and failure modes for cells. Two types of DFFC, anode and electrolyte supported, were used with two different fuel feed streams of propane/isobutene and ethanol. Several test configurations consisting of single cells, as well as stacked systems were tested to show how cell performed and degraded over time. All tests were run using a Biologic VMP3 potentiostat connected to a cell placed within the flame of a modified burner MSR® Wisperlite Universal stove. The maximum current and power output seen by any electrolyte supported DFFCs tested was 47.7 mA/cm2 and 9.6 mW/cm2 respectively, while that generated by anode supported DFFCs was 53.7 mA/cm2 and 9.25 mW/cm2 respectively with both cells operating under propane/isobutene fuel feed streams. All TECs tested dramatically outperformed both constructions of DFFC with a maximum current and power output of 309 mA/cm2 and 80 mW/cm2 respectively. It was also found that electrolyte supported DFFCs appeared to be less susceptible to degradation of the cell microstructure over time but more prone to cracking, while anode supported DFFCs were dramatically less susceptible to cracking but exhibited substantial microstructure degradation and shorter usable lifecycles. TECs tested were found to only be susceptible to overheating, and thus were suggested for use with electrolyte supported DFFCs in remote powering applications.

Contributors

Agent

Created

Date Created
  • 2014-05

148155-Thumbnail Image.png

Fuel Cell Integrated Gas Turbine Hybrid System Under Various Conditions

Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

Contributors

Created

Date Created
  • 2021-05

148009-Thumbnail Image.png

Analysis of Various Renewable Energy Systems as a Potential Replacement to Industrial Diesel Engine Systems [CLOSED DEFENSE]

Description

This thesis explores the investigation of the project “Designing for a Post-Diesel Engine World”, a collaborative experiment between organizations within Arizona State University and an undisclosed company. This investigation includes

This thesis explores the investigation of the project “Designing for a Post-Diesel Engine World”, a collaborative experiment between organizations within Arizona State University and an undisclosed company. This investigation includes the analysis of various renewable energy technologies and their potential to replace industrial diesel engines as used in the company’s business. In order to be competitive with diesel engines, the technology should match or exceed diesel in power output, have reduced environmental impact, and meet other criteria standards as determined by the company. The team defined the final selection criteria as: low environmental impact, high efficiency, high power, and high technology readiness level. I served as the lead Hydrogen Fuel Cell Researcher and originally hypothesized that PEM fuel cells would be the most viable solution. Results of the analysis led to PEM fuel cells and Li-ion batteries being top contenders, and the team developed a hybrid solution incorporating both of these technologies in a technical and strategic solution. The resulting solution design from this project has the potential to be modified and implemented in various industries and reduce overall anthropogenic emissions from industrial processes.

Contributors

Agent

Created

Date Created
  • 2021-05

153168-Thumbnail Image.png

Potential materials for fuel cells

Description

Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is

Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is the cost of the catalyst material in manufacturing the fuel cell. In the present study, the major focus in PEMFCs has been in reduction of the cost of the catalyst material using graphene, thin film coated and Organometallic Molecular catalysts. The present research is focused on improving the durability and active surface area of the catalyst materials with low platinum loading using nanomaterials to reduce the effective cost of the fuel cells. Performance, Electrochemical impedance spectroscopy, oxygen reduction and surface morphology studies were performed on each manufactured material.

Alkaline fuel cells with anion exchange membrane get immense attention due to very attractive opportunity of using non-noble metal catalyst materials. In the present study, cathodes with various organometallic cathode materials were prepared and investigated for alkaline membrane fuel cells for oxygen reduction and performance studies. Co and Fe Phthalocyanine catalyst materials were deposited on multi-walled carbon nanotubes (MWCNTs) support materials. Membrane Electrode Assemblies (MEAs) were fabricated using Tokuyama Membrane (#A901) with cathodes containing Co and Fe Phthalocyanine/MWCNTs and Pt/C anodes. Fuel cell performance of the MEAs was examined.

Contributors

Agent

Created

Date Created
  • 2014

155672-Thumbnail Image.png

Power Management Strategy of a Fuel Cell Hybrid Electric Vehicle with Integrated Ultra-Capacitor with Driving Pattern Recognition

Description

The greenhouse gases in the atmosphere have reached a highest level due to high number of vehicles. A Fuel Cell Hybrid Electric Vehicle (FCHEV) has zero greenhouse gas emissions compared

The greenhouse gases in the atmosphere have reached a highest level due to high number of vehicles. A Fuel Cell Hybrid Electric Vehicle (FCHEV) has zero greenhouse gas emissions compared to conventional ICE vehicles or Hybrid Electric Vehicles and hence is a better alternative. All Electric Vehicle (AEVs) have longer charging time which is unfavorable. A fully charged battery gives less range compared to a FCHEV with a full hydrogen tank. So FCHEV has an advantage of a quick fuel up and more mileage than AEVs. A Proton Electron Membrane Fuel Cell (PEMFC) is the commonly used kind of fuel cell vehicles but it possesses slow current dynamics and hence not suitable to be the sole power source in a vehicle. Therefore, improving the transient power capabilities of fuel cell to satisfy the road load demand is critical.

This research studies integration of Ultra-Capacitor (UC) to FCHEV. The objective is to analyze the effect of integrating UCs on the transient response of FCHEV powertrain. UCs has higher power density which can overcome slow dynamics of fuel cell. A power management strategy utilizing peak power shaving strategy is implemented. The goal is to decrease power load on batteries and operate fuel cell stack in it’s most efficient region. Complete model to simulate the physical behavior of UC-Integrated FCHEV (UC-FCHEV) is developed using Matlab/SIMULINK. The fuel cell polarization curve is utilized to devise operating points of the fuel cell to maintain its operation at most efficient region. Results show reduction of hydrogen consumption in aggressive US06 drive cycle from 0.29 kg per drive cycle to 0.12 kg. The maximum charge/discharge battery current was reduced from 286 amperes to 110 amperes in US06 drive cycle. Results for the FUDS drive cycle show a reduction in fuel consumption from 0.18 kg to 0.05 kg in one drive cycle. This reduction in current increases the life of the battery since its protected from overcurrent. The SOC profile of the battery also shows that the battery is not discharged to its minimum threshold which increasing the health of the battery based on number of charge/discharge cycles.

Contributors

Agent

Created

Date Created
  • 2017

153179-Thumbnail Image.png

The synthesis and characterization of ionic liquids for alkali-metal batteries and a novel electrolyte for non-humidified fuel cells

Description

This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries

This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy.

Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC.

Battery testing based on [EMI+][FeCl4-] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4+][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements.

Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases producing water vapor. Principle advantage is high-energy efficiency of up to 70% in contrast to an internal combustion engine <40%. Nafion-based fuel cells are prone to carbon monoxide catalytic poisoning and polymer membrane degradation unless heavily hydrated under cell-pressurization. This novel "SiPOH" solid-electrolytic gel (originally liquid-state) operated in the fuel cell at 121oC yielding current and power densities high as 731mAcm-2 and 345mWcm-2, respectively. Enhanced proton conduction significantly increased H2 fuel efficiency to 89.7% utilizing only 3.1mlmin-1 under dry, unpressurized testing conditions. All these energy devices aforementioned evidently have future promise; therefore in early developmental stages.

Contributors

Agent

Created

Date Created
  • 2014

149660-Thumbnail Image.png

Proton exchange membrane fuel cell modeling and simulation using Ansys Fluent

Description

Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation.

Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several important limitations which must be overcome before commercial viability can be achieved. Active areas of research into making them commercially viable include reducing the cost, size and weight of fuel cells while also increasing their durability and performance. A growing and important part of this research involves the computer modeling of fuel cells. High quality computer modeling and simulation of fuel cells can help speed up the discovery of optimized fuel cell components. Computer modeling can also help improve fundamental understanding of the mechanisms and reactions that take place within the fuel cell. The work presented in this thesis describes a procedure for utilizing computer modeling to create high quality fuel cell simulations using Ansys Fluent 12.1. Methods for creating computer aided design (CAD) models of fuel cells are discussed. Detailed simulation parameters are described and emphasis is placed on establishing convergence criteria which are essential for producing consistent results. A mesh sensitivity study of the catalyst and membrane layers is presented showing the importance of adhering to strictly defined convergence criteria. A study of iteration sensitivity of the simulation at low and high current densities is performed which demonstrates the variance in the rate of convergence and the absolute difference between solution values derived at low numbers of iterations and high numbers of iterations.

Contributors

Agent

Created

Date Created
  • 2011

149480-Thumbnail Image.png

Membraneless microfluidic fuel cells

Description

Portable devices rely on battery systems that contribute largely to the overall device form factor and delay portability due to recharging. Membraneless microfluidic fuel cells are considered as the next

Portable devices rely on battery systems that contribute largely to the overall device form factor and delay portability due to recharging. Membraneless microfluidic fuel cells are considered as the next generation of portable power sources for their compatibility with higher energy density reactants. Microfluidic fuel cells are potentially cost effective and robust because they use low Reynolds number flow to maintain fuel and oxidant separation instead of ion exchange membranes. However, membraneless fuel cells suffer from poor efficiency due to poor mass transport and Ohmic losses. Current microfluidic fuel cell designs suffer from reactant cross-diffusion and thick boundary layers at the electrode surfaces, which result in a compromise between the cell's power output and fuel utilization. This dissertation presents novel flow field architectures aimed at alleviating the mass transport limitations. The first architecture provides a reactant interface where the reactant diffusive concentration gradients are aligned with the bulk flow, mitigating reactant mixing through diffusion and thus crossover. This cell also uses porous electro-catalysts to improve electrode mass transport which results in higher extraction of reactant energy. The second architecture uses porous electrodes and an inert conductive electrolyte stream between the reactants to enhance the interfacial electrical conductivity and maintain complete reactant separation. This design is stacked hydrodynamically and electrically, analogous to membrane based systems, providing increased reactant utilization and power. These fuel cell architectures decouple the fuel cell's power output from its fuel utilization. The fuel cells are tested over a wide range of conditions including variation of the loads, reactant concentrations, background electrolytes, flow rates, and fuel cell geometries. These experiments show that increasing the fuel cell power output is accomplished by increasing reactant flow rates, electrolyte conductivity, and ionic exchange areas, and by decreasing the spacing between the electrodes. The experimental and theoretical observations presented in this dissertation will aid in the future design and commercialization of a new portable power source, which has the desired attributes of high power output per weight and volume and instant rechargeability.

Contributors

Agent

Created

Date Created
  • 2010