Matching Items (4)
Filtering by

Clear all filters

152104-Thumbnail Image.png
Description
Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial photosynthesis: to convert water to hydrogen using solar radiation as

Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial photosynthesis: to convert water to hydrogen using solar radiation as the sole energy input and ideally do so with the use of low cost, abundant materials. Constructing photoelectrochemical cells incorporating photoanodes structurally reminiscent of those used in dye sensitized photovoltaic solar cells presents one approach to establishing an artificial photosynthetic system. The work presented herein describes the production, integration, and study of water oxidation catalysts, molecular dyes, and metal oxide based photoelectrodes carried out in the pursuit of developing solar water splitting systems.
ContributorsSherman, Benjamin D (Author) / Moore, Thomas (Thesis advisor) / Moore, Ana (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
152710-Thumbnail Image.png
Description
Increased global demand for energy has led to prolific use of fossil fuels, which produce and release greenhouse gases, such as carbon dioxide. This increase in atmospheric carbon dioxide affects the global weather system and has been cited as a cause for global warming. For humans to continue to meet

Increased global demand for energy has led to prolific use of fossil fuels, which produce and release greenhouse gases, such as carbon dioxide. This increase in atmospheric carbon dioxide affects the global weather system and has been cited as a cause for global warming. For humans to continue to meet demands for energy while reducing greenhouse emission, a sustainable, carbon-neutral energy source must be developed. The sun provides energy for the majority of life on earth, as well as the energy stored in the chemical bonds of fossil fuels. This dissertation investigates systems inspired by the biological mechanism of solar energy capture and storage. In natural photosynthesis, organisms use chlorophyll as a chromophore to absorb the sun's energy. Bio-inspired systems use close analogues like porphyrins and phthalocyanines. In this dissertation, a soluble, semiconducting porphyrin is reported. The polymer was synthesized via a Buchwald-Hartwig style coupling of porphyrin monomers which produced a polyaniline-like chain with porphyrins incorporated into the backbone. Spectroscopic and electrochemical studies were performed, which show evidence of excited state charge transfer and a first oxidation state of 0.58 V (vs SCE). These properties suggest that the polymer could be involved in excited state electron donation to fullerenes and other electron acceptors, which could be beneficial in organic photovoltaics, sensors, and other applications. Molecular dyads and triads capable of charge separation have been studied for decades, and the spectroscopic properties of two novel systems are reported in this dissertation. A peripherally-connected zinc-phthalocyanine-C60 dyad was studied, and showed excited state electron transfer from the phthalocyanine excited state to the C60, with a long-lived charge separated state. An axially-linked carotene-Si-pthalocyanine-C60 triad was studied, showing excited state electron transfer from the phthalocyanine to the C60, but fast recombination before hole transfer can occur to the carotene. Analogues of the electron transport mechanisms used in many biological systems use iron-sulfur clusters to shuttle electrons from donors to acceptors. In this dissertation, the spectroscopic properties of a de novo protein were studied. Nanosecond transient absorption was used to characterize the electron and energy transfer of an excited water-soluble porphyrin to the oxidized [FeS] clusters incorporated in the de novo protein. The triplet state of the porphyrin was strongly quenched with the holo-protein without a rise in porphyrin plus signal, suggesting that only Dexter-type energy transfer occurs between the sensitized porphyrin and the [FeS] clusters.
ContributorsSchmitz, Robert (Author) / Gust, John D (Thesis advisor) / Jones, Anne K (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2014
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154445-Thumbnail Image.png
Description
X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel

X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel the structures of complex proteins with vital biological functions. A key step and major bottleneck of structure determination is protein crystallization, which is very arduous due to the complexity of proteins and their natural environments. Furthermore, crystal characteristics govern data quality, thus need to be optimized to attain the most accurate reconstruction of the protein structure. Crystal size is one such characteristic in which narrowed distributions with a small modal size can significantly reduce the amount of protein needed for SFX. A novel microfluidic sorting platform was developed to isolate viable ~200 nm – ~600 nm photosystem I (PSI) membrane protein crystals from ~200 nm – ~20 μm crystal samples using dielectrophoresis, as confirmed by fluorescence microscopy, second-order nonlinear imaging of chiral crystals (SONICC), and dynamic light scattering. The platform was scaled-up to rapidly provide 100s of microliters of sorted crystals necessary for SFX, in which similar crystal size distributions were attained. Transmission electron microscopy was used to view the PSI crystal lattice, which remained well-ordered postsorting, and SFX diffraction data was obtained, confirming a high-quality, viable crystal sample. Simulations indicated sorted samples provided accurate, complete SFX datasets with 3500-fold less protein than unsorted samples. Microfluidic devices were also developed for versatile, rapid protein crystallization screening using nanovolumes of sample. Concentration gradients of protein and precipitant were generated to crystallize PSI, phycocyanin, and lysozyme using modified counterdiffusion. Additionally, a passive mixer was created to generate unique solution concentrations within isolated nanowells to crystallize phycocyanin and lysozyme. Crystal imaging with brightfield microscopy, UV fluorescence, and SONICC coupled with numerical modeling allowed quantification of crystal growth conditions for efficient phase diagram development. The developed microfluidic tools demonstrated the capability of improving samples for protein crystallography, offering a foundation for continued development of platforms to aid protein structure determination.
ContributorsAbdallah, Bahige G (Author) / Ros, Alexandra (Thesis advisor) / Buttry, Daniel (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2016