Description
Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial

Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial photosynthesis: to convert water to hydrogen using solar radiation as the sole energy input and ideally do so with the use of low cost, abundant materials. Constructing photoelectrochemical cells incorporating photoanodes structurally reminiscent of those used in dye sensitized photovoltaic solar cells presents one approach to establishing an artificial photosynthetic system. The work presented herein describes the production, integration, and study of water oxidation catalysts, molecular dyes, and metal oxide based photoelectrodes carried out in the pursuit of developing solar water splitting systems.
Reuse Permissions
  • Downloads
    pdf (2.4 MB)

    Details

    Title
    • Application and study of water oxidation catalysts and molecular dyes for solar-fuel production
    Contributors
    Date Created
    2013
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2013
      Note type
      thesis
    • Includes bibliographical references (p. 99-110)
      Note type
      bibliography
    • Field of study: Chemistry

    Citation and reuse

    Statement of Responsibility

    by Benjamin Sherman

    Machine-readable links