Matching Items (2)
Filtering by

Clear all filters

151051-Thumbnail Image.png
Description
Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time quotes ensure profitability for supplier, but discourage the customers from

Today's competitive markets force companies to constantly engage in the complex task of managing their demand. In make-to-order manufacturing or service systems, the demand of a product is shaped by price and lead times, where high price and lead time quotes ensure profitability for supplier, but discourage the customers from placing orders. Low price and lead times, on the other hand, generally result in high demand, but do not necessarily ensure profitability. The price and lead time quotation problem considers the trade-off between offering high and low prices and lead times. The recent practices in make-to- order manufacturing companies reveal the importance of dynamic quotation strategies, under which the prices and lead time quotes flexibly change depending on the status of the system. In this dissertation, the objective is to model a make-to-order manufacturing system and explore various aspects of dynamic quotation strategies such as the behavior of optimal price and lead time decisions, the impact of customer preferences on optimal decisions, the benefits of employing dynamic quotation in comparison to simpler quotation strategies, and the benefits of coordinating price and lead time decisions. I first consider a manufacturer that receives demand from spot purchasers (who are quoted dynamic price and lead times), as well as from contract customers who have agree- ments with the manufacturer with fixed price and lead time terms. I analyze how customer preferences affect the optimal price and lead time decisions, the benefits of dynamic quo- tation, and the optimal mix of spot purchaser and contract customers. These analyses necessitate the computation of expected tardiness of customer orders at the moment cus- tomer enters the system. Hence, in the second part of the dissertation, I develop method- ologies to compute the expected tardiness in multi-class priority queues. For the trivial single class case, a closed formulation is obtained. For the more complex multi-class case, numerical inverse Laplace transformation algorithms are developed. In the last part of the dissertation, I model a decentralized system with two components. Marketing department determines the price quotes with the objective of maximizing revenues, and manufacturing department determines the lead time quotes to minimize lateness costs. I discuss the ben- efits of coordinating price and lead time decisions, and develop an incentivization scheme to reduce the negative impacts of lack of coordination.
ContributorsHafizoglu, Ahmet Baykal (Author) / Gel, Esma S (Thesis advisor) / Villalobos, Jesus R (Committee member) / Mirchandani, Pitu (Committee member) / Keskinocak, Pinar (Committee member) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2012
Description
Agricultural supply chains are complex systems which pose significant challenges beyond those of traditional supply chains. These challenges include: long lead times, stochastic yields, short shelf lives and a highly distributed supply base. This complexity makes coordination critical to prevent food waste and other inefficiencies. Yet, supply chains of fresh

Agricultural supply chains are complex systems which pose significant challenges beyond those of traditional supply chains. These challenges include: long lead times, stochastic yields, short shelf lives and a highly distributed supply base. This complexity makes coordination critical to prevent food waste and other inefficiencies. Yet, supply chains of fresh produce suffer from high levels of food waste; moreover, their high fragmentation places a great economic burden on small and medium sized farms.

This research develops planning tools tailored to the production/consolidation level in the supply chain, taking the perspective of an agricultural cooperative—a business model which presents unique coordination challenges. These institutions are prone to internal conflict brought about by strategic behavior, internal competition and the distributed nature of production information, which members keep private.

A mechanism is designed to coordinate agricultural production in a distributed manner with asymmetrically distributed information. Coordination is achieved by varying the prices of goods in an auction like format and allowing participants to choose their supply quantities; the auction terminates when production commitments match desired supply.

In order to prevent participants from misrepresenting their information, strategic bidding is formulated from the farmer’s perspective as an optimization problem; thereafter, optimal bidding strategies are formulated to refine the structure of the coordination mechanism in order to minimize the negative impact of strategic bidding. The coordination mechanism is shown to be robust against strategic behavior and to provide solutions with a small optimality gap. Additional information and managerial insights are obtained from bidding data collected throughout the mechanism. It is shown that, through hierarchical clustering, farmers can be effectively classified according to their cost structures.

Finally, considerations of stochastic yields as they pertain to coordination are addressed. Here, the farmer’s decision of how much to plant in order to meet contracted supply is modeled as a newsvendor with stochastic yields; furthermore, options contracts are made available to the farmer as tools for enhancing coordination. It is shown that the use of option contracts reduces the gap between expected harvest quantities and the contracted supply, thus facilitating coordination.
ContributorsMason De Rada, Andrew Nicholas (Author) / Villalobos, Jesus R (Thesis advisor) / Griffin, Paul (Committee member) / Kempf, Karl (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2015