Matching Items (8)
Filtering by

Clear all filters

151342-Thumbnail Image.png
Description
Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus

Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus hesperus, is a medically-important pest species that often forms dense urban subpopulations (i.e., infestations) relative to the low-density subpopulations found throughout undisturbed, desert habitat. Here, I employ field and laboratory studies to examine the population ecology and stoichiometry of this urban pest to increase our understanding of the mechanisms underlying its success. The population ecology of ten black widow subpopulations spread across metropolitan Phoenix, AZ was examined during the peak breeding season (June-August). This study revealed that arthropod prey abundance, female mass and population density of females showed significant spatial variation across the ten subpopulations. Additionally, prey abundance and foraging success, measured as the number of carcasses found in webs, were a strong determinant of female mass and population density within each subpopulation. To test the mechanisms that drive black widow infestations, I used ecological stoichiometry to examine the nutrient (nitrogen and phosphorus) composition of spiders and arthropod prey from urban habitat, desert habitat and a laboratory diet regime. These studies revealed that (1) spiders are more nutrient rich than cricket prey in the field, (2) spider subpopulations exhibit significant spatial variation in their nitrogen composition, (3) nutrient composition of urban spider subpopulations does not differ significantly from Sonoran desert subpopulations, (4) laboratory-reared spiders fed a diet of only laboratory-reared crickets are more nitrogen and phosphorus limited than field-captured spiders, and (5) cannibalism by laboratory-reared spiders alleviated phosphorus limitation, but not nitrogen limitation, when compared to field-captured spiders. This work highlights the need to examine the population ecology of species relationships, such as predator-prey dynamics, to fully understand the fecundity and population growth of urban pest species. Moreover, the integration of population ecology and stoichiometry illustrates the need to address mechanisms like nutrient limitation that may explain why urban pest populations thrive and native species diversity suffers following HIREC.
ContributorsTrubl, Patricia (Author) / Johnson, James C. (Thesis advisor) / Rutowski, Ronald (Thesis advisor) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
153260-Thumbnail Image.png
Description
Targeted growth is necessary for sustainable urbanization. There is a pattern in China of rapid development due to inflated projections. This creates "ghost towns" and underutilized urban services that don't support the population.

In the case of Taiyuan, this industrial third-tier city of 4.2 million people. A majority of the newer

Targeted growth is necessary for sustainable urbanization. There is a pattern in China of rapid development due to inflated projections. This creates "ghost towns" and underutilized urban services that don't support the population.

In the case of Taiyuan, this industrial third-tier city of 4.2 million people. A majority of the newer residential services and high-end commercial areas are on the older, eastern side of the city. Since 2007, major urban investments have been made in developing the corridor that leads to the airport, including building a massive hospital, a new sports stadium, and "University City". The intention of the city officials is to encourage a new image of Taiyuan- one that is a tourist destination, one that has a high standard of living for residents. However, the consequences of these major developments might be immense, because of the required shift of community, residents and capital that would be required to sustain these new areas. Much of the new development lacks the reliable and frequent public transit of the more established downtown areas.

Do these investments in medical complexes, sports stadiums and massive shopping centers create new jobs that impact the income disparity, or do these new areas take years to fill, creating vacuums of investment that remove funding from areas with established communities? Can Taiyuan move successfully to a post-industrial economy with these government interventions, or is it too much too soon?

By examining demographic data from 2000, 2007, 2009, 2011, and 2013, research on sustainability assessments in Chinese cities (Lu Jia), and translated government publications detailing the urbanization efforts in Taiyuan, I will assess the results of the urbanization changes instituted by the new mayor, Geng Yanbo. My thesis will evaluate the success and failures of these policies and the implications for Taiyuan.
ContributorsDolins, Sarah-Laura (Author) / Webster, Douglas (Thesis advisor) / Golub, Aaron (Committee member) / Cai, Jianming (Committee member) / Arizona State University (Publisher)
Created2014
151042-Thumbnail Image.png
Description
Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate

Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate change and urban development on vegetation distribution in a Mediterranean-type ecosystem; to identify the primary source of uncertainty in suitable habitat predictions; and to evaluate how well conservation areas protect future habitat in the Southwest ecoregion of the California Floristic Province. I used a consensus-based modeling approach combining three different species distribution models to predict current and future suitable habitat for 19 plant species representing different plant functional types (PFT) defined by fire-response (obligate seeders, resprouting shrubs), and life forms (herbs, subshurbs). I also examined the response of species grouped by range sizes (large, small). I used two climate models, two emission scenarios, two thresholds, and high-resolution (90m resolution) environmental data to create a range of potential scenarios. I evaluated the effectiveness of an existing conservation network to protect suitable habitat for rare species in light of climate and land use change. The results indicate that the area of suitable habitat for each species varied depending on the climate model, emission scenario, and threshold combination. The suitable habitat for up to four species could disappear from the ecoregion, while suitable habitat for up to 15 other species could decrease under climate change conditions. The centroid of the species' suitable environmental conditions could shift up to 440 km. Large net gains in suitable habitat were predicted for a few species. The suitable habitat area for herbs has a small response to climate change, while obligate seeders could be the most affected PFT. The results indicate that the other two PFTs gain a considerable amount of suitable habitat area. Several rare species could lose suitable habitat area inside designated conservation areas while gaining suitable habitat area outside. Climate change is predicted to be more important than urban development as a driver of habitat loss for vegetation in this region in the coming century. These results indicate that regional analyses of this type are useful and necessary to understand the dynamics of drivers of change at the regional scale and to inform decision making at this scale.
ContributorsBeltrán Villarreal, Bray de Jesús (Author) / Franklin, Janet (Thesis advisor) / Fenichel, Eli P (Committee member) / Kinzig, Ann P (Committee member) / Collins, James P. (Committee member) / Arizona State University (Publisher)
Created2012
153721-Thumbnail Image.png
Description
Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research ga

Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research gap in emerging nations concerning this topic. Thus, this research focuses on the assessment of climate impacts related to urbanization on the largest metropolitan area in Latin America: Mexico City.

Numerical simulations using a state-of-the-science regional climate model are utilized to address a trio of scientifically relevant questions with wide global applicability. The importance of an accurate representation of land use and land cover is first demonstrated through comparison of numerical simulations against observations. Second, the simulated effect of anthropogenic heating is quantified. Lastly, numerical simulations are performed using pre-historic scenarios of land use and land cover to examine and quantify the impact of Mexico City's urban expansion and changes in surface water features on its regional climate.
ContributorsBenson-Lira, Valeria (Author) / Georgescu, Matei (Thesis advisor) / Brazel, Anthony (Committee member) / Vivoni, Enrique (Committee member) / Arizona State University (Publisher)
Created2015
154684-Thumbnail Image.png
Description
Peri-urbanization is a process in which previously rural areas on the outskirts of established cities become more urban in character. This process is of great significance in China, because peri-urbanization is often manufacturing and Foreign Direct Investment (FDI) driven. After witnessing the dramatic development of the Eastern Coastal Region from

Peri-urbanization is a process in which previously rural areas on the outskirts of established cities become more urban in character. This process is of great significance in China, because peri-urbanization is often manufacturing and Foreign Direct Investment (FDI) driven. After witnessing the dramatic development of the Eastern Coastal Region from the mid-1980s, China recently changed its regional development focus to interior regions to pursue more spatial equity within the nation. Wuhan, as the most populous city in central China, is experiencing significant peri-urbanization. The thesis focuses on Dongxihu District, a representative peri-urban area in Wuhan Municipality.

To explore peri-urbanization in Dongxihu, this study first documents the metrics of ongoing peri-urbanization in the District from land use, economic, demographic and institutional perspectives. Causality is explored by relating peri-urban outcomes to drivers within the framework of research questions, namely: (i) What is driving peri-urban change in Dongxihu? (ii) Which drivers of peri-urbanization in the District are most important? (iii) How can Dong Xi Hu's peri-urbanization process and outcomes best be characterized? and (iv) What policy implications can be drawn from Dong Xi Hu's peri-urbanization experience?

The primary conclusion is that Dongxihu's peri-urbanization is primarily manufacturing driven, resembling previous first generation peri-urbanization on the coast more than the more diverse peri-urban outcomes now emerging in wealthy coastal metropolitan areas, e.g., Shanghai.
ContributorsLi, Jianyi, M.U.E.P (Author) / Webster, Douglas R (Thesis advisor) / Pfeiffer, Deirdre A (Thesis advisor) / Cai, Jianming (Committee member) / Arizona State University (Publisher)
Created2016
155192-Thumbnail Image.png
Description
Context – Urbanization can have negative effects on bat habitat use through the loss and isolation of habitat even for volant bats. Yet, how bats respond to the changing landscape composition and configuration of urban environments remains poorly understood.

Objective – This study examines the relationship between bat habitat

Context – Urbanization can have negative effects on bat habitat use through the loss and isolation of habitat even for volant bats. Yet, how bats respond to the changing landscape composition and configuration of urban environments remains poorly understood.

Objective – This study examines the relationship between bat habitat use and landscape pattern across multiple scales in the Phoenix metropolitan region. My research explores how landscape composition and configuration affects bat activity, foraging activity, and species richness (response variables), and the distinct habitats that they use.

Methods – I used a multi-scale landscape approach and acoustic monitoring data to create predictive models that identified the key predictor variables across multiple scales within the study area. I selected three scales with the intent of capturing the landscape, home range, and site scales, which may all be relevant for understanding bat habitat use.

Results – Overall, class-level metrics and configuration metrics best explained bat habitat use for bat species associated with this urban setting. The extent and extensiveness of water (corresponding to small water bodies and watercourses) were the most important predictor variables across all response variables. Bat activity was predicted to be high in native vegetation remnants, and low in native vegetation at the city periphery. Foraging activity was predicted to be high in fine-scale land cover heterogeneity. Species richness was predicted to be high in golf courses, and low in commercial areas. Bat habitat use was affected by urban landscape pattern mainly at the landscape and site scale.

Conclusions – My results suggested in hot arid urban landscapes water is a limiting factor for bats, even in urban landscapes where the availability of water may be greater than in outlying native desert habitat. Golf courses had the highest species richness, and included the detection of the uncommon pocketed free-tailed bat (Nyctinomops femorosaccus). Water cover types had the second highest species richness. Golf courses may serve as important stop-overs or refuges for rare or elusive bats. Urban waterways and golf courses are novel urban cover types that can serve as compliments to urban preserves, and other green spaces for bat conservation.
ContributorsBazelman, Tracy C (Author) / Wu, Jianguo (Thesis advisor) / Chambers, Carol L. (Thesis advisor) / Smith, Andrew T. (Committee member) / Arizona State University (Publisher)
Created2016
168412-Thumbnail Image.png
Description
Urbanization is a primary driver of ecological change and occurs across a gradient from low- to high- density development. Wildlife species can exhibit different responses to urbanization, with some species being more sensitive than others. Further, wildlife communities can exhibit varying patterns of species richness across the gradient of urbanization,

Urbanization is a primary driver of ecological change and occurs across a gradient from low- to high- density development. Wildlife species can exhibit different responses to urbanization, with some species being more sensitive than others. Further, wildlife communities can exhibit varying patterns of species richness across the gradient of urbanization, where species richness can either decrease linearly or peak at intermediate levels of urbanization, consistent with the intermediate disturbance hypothesis (IDH). For chapter one, the objective was to evaluate the response of bats to urbanization across seasons. It was predicted that bat species would exhibit different responses to urbanization and that bats would increase use of urbanized areas in the summer season, where food and water resources were assumed to be greater. For chapter two, the objective was to evaluate species richness of bats across the gradient of urbanization in the summer season. Species richness of bats was predicted to either decrease linearly or peak at moderate levels of urban intensity. To test these hypotheses, 50 sites across the gradient of urbanization were sampled during four seasons using stationary acoustic bat monitors. Fourteen bat species were identified during 1000 nightly occasions. Consistent with chapter one predictions, bat species exhibited different responses to urbanization, with most bats being sensitive to urbanization. Counter to predictions, most bats did not appear to shift their response to urbanization across seasons. However, two bats (i.e., big brown bat and Yuma myotis) exhibited higher use of urbanized areas in the summer compared to other seasons. Consistent with chapter two predictions, species richness of bats decreased with increasing urban intensity. Results from this study demonstrate that most bats in the community were sensitive to urbanization, which is potentially related to species traits and has important conservation implications. First, it is likely important to maintain high-quality undeveloped habitat with low anthropogenic disturbance in wildland areas for species that are sensitive to urbanization and to maximize species richness. In addition, for bats that are tolerant of urbanization and to increase species richness in urbanized areas, it is likely important to preserve resources in urbanized areas and increase landscape connectivity.
ContributorsDwyer, Jessie (Author) / Lewis, Jesse S (Thesis advisor) / Moore, Marianne S (Committee member) / Saul, Steven E (Committee member) / Arizona State University (Publisher)
Created2021
168461-Thumbnail Image.png
Description
The built environment increases radiant heat exchange in urban areas by several degrees hotter compared to non-urban areas. Research has investigated how urbanization and heat affect human health; but there is scant literature on the effects of urban heat on wildlife. Animal body condition can be used to assess overall

The built environment increases radiant heat exchange in urban areas by several degrees hotter compared to non-urban areas. Research has investigated how urbanization and heat affect human health; but there is scant literature on the effects of urban heat on wildlife. Animal body condition can be used to assess overall health. This parameter estimates the storage of energy-rich fat, which is important for growth, survival, and reproduction. The purpose of my research was to examine the Urban Heat Island effect on wild rodents across urban field sites spanning three strata of land surface temperature. Site level surface temperatures were measured using temperature data loggers and I captured 116 adult pocket mice (Chaetodipus spp. and Perognathus spp.) and Merriam’s kangaroo rats (Dipodomys merriami) to measure their body condition using accurate and noninvasive quantitative magnetic resonance. I used baited Sherman live traps from mid-May to early September during 2019 and 2020 in mountainous urban parks and open spaces over two summers. Rodents were captured at seven sites near the Phoenix metropolitan area; an ideal area for examining the effect of extreme heat experienced by urban wildlife. Results supported the prediction that rodent body condition was greatest in the cooler temperature stratas compared to the hottest temperature strata. I related rodent body condition to environmental predictors to dispute to environmental predictors to dispute alternative hypotheses; such as vegetation cover and degree of urbanization. Results based on measures of body fat and environmental predictors show pocket mice have more fat where vegetation is higher, nighttime temperatures are lower, surface temperatures are lower, and urbanization is greater. Kangaroo rats have more fat where surface temperature is lower. My results contribute to understanding the negative effects of extreme heat on body condition and generalized health experienced by urban wildlife because of the built environment. This research shows a need to investigate further impacts of urban heat on wildlife. Management suggestions for urban parks and open spaces include increasing vegetation cover, reducing impervious surface, and building with materials that reduce radiant heat.
ContributorsAllen, Brittany D'Ann (Author) / Bateman, Heather L (Thesis advisor) / Moore, Marianne S (Committee member) / Hondula, David M (Committee member) / Arizona State University (Publisher)
Created2021