Matching Items (30)

A Review on the Generation, Determination and Mitigation of Urban Heat Island

Description

Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization.

Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization. The large amount of heat generated from urban structures, as they consume and re-radiate solar radiations, and from the anthropogenic heat sources are the main causes of UHI. The two heat sources increase the temperatures of an urban area as compared to its surroundings, which is known as Urban Heat Island Intensity (UHII). The problem is even worse in cities or metropolises with large population and extensive economic activities. The estimated three billion people living in the urban areas in the world are directly exposed to the problem, which will be increased significantly in the near future. Due to the severity of the problem, vast research effort has been dedicated and a wide range of literature is available for the subject. The literature available in this area includes the latest research approaches, concepts, methodologies, latest investigation tools and mitigation measures. This study was carried out to review and summarize this research area through an investigation of the most important feature of UHI. It was concluded that the heat re-radiated by the urban structures plays the most important role which should be investigated in details to study urban heating especially the UHI. It was also concluded that the future research should be focused on design and planning parameters for reducing the effects of urban heat island and ultimately living in a better environment.

Contributors

Agent

Created

Date Created
  • 2007-09-27

Urban Heat & Critical Infrastructure Networks: A Viewpoint

Description

The forthcoming century will see cities exposed to temperature rises from urbanisation as well as greenhouse gas induced radiative forcing. Increasing levels of urban heat will have a direct impact

The forthcoming century will see cities exposed to temperature rises from urbanisation as well as greenhouse gas induced radiative forcing. Increasing levels of urban heat will have a direct impact upon the people living in cities in terms of health, but will also have an indirect effect by impacting upon the critical infrastructure networks of the city itself (e.g., ICT, transport and energy). Some infrastructures are more resistant than others, but there is a growing reliance on the energy network to provide the power for all of our future critical infrastructure networks. Unfortunately, the energy network is far from resilient from the effects of urban heat and is set to face a perfect storm of increasing temperatures and loadings as demand increases for air conditioning, refrigeration, an electrified transport network and a high-speed ICT network. The result is that any failure on the energy network could quickly cascade across much of our critical infrastructure. System vulnerabilities will become increasingly apparent as the impacts of climate change begin to manifest and this paper calls for interdisciplinary action outlining the need for high resolution monitoring and modelling of the impact of urban heat on infrastructure.

Contributors

Created

Date Created
  • 2013-04-01

How Do Variations in Urban Heat Islands in Space and Time Influence Household Water Use? The Case of Phoenix, Arizona

Description

This paper explores how urbanization, through its role in the evolution of Urban Heat Island (UHI), affects residential water consumption. Using longitudinal data and drawing on a mesoscale atmospheric model,

This paper explores how urbanization, through its role in the evolution of Urban Heat Island (UHI), affects residential water consumption. Using longitudinal data and drawing on a mesoscale atmospheric model, we examine how variations in surface temperature at the census tract level have affected water use in single family residences in Phoenix, Arizona. Results show that each Fahrenheit rise in nighttime temperature increases water consumption by 1.4%. This temperature effect is found to vary significantly with lot size and pool size. The study provides insights into the links between urban form and water use, through the dynamics of UHI.

Contributors

Created

Date Created
  • 2012-06-14

Land Fragmentation Under Rapid Urbanization: A Cross-Site Analysis of Southwestern Cities

Description

Using National Land Cover Data we analyzed land fragmentation trends from 1992 to 2001 in five southwestern cities associated with Long Term Ecological Research (LTER) sites.

Contributors

Created

Date Created
  • 2011-02-11

136429-Thumbnail Image.png

The effects of urbanization and human disturbance on problem solving in juvenile house finches (Haemorhous mexicanus)

Description

Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby

Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby animals come to solve novel problems while navigating, foraging, etc. The increased presence of humans in urban areas is an additional environmental challenge that may potentially impact cognitive performance in wildlife. To date, there has been little experimental investigation into how human disturbance affects problem solving in animals from urban and rural areas. Urban animals may show superior cognitive performance in the face of human disturbance, due to familiarity with benign human presence, or rural animals may show greater cognitive performance in response to the heightened stress of unfamiliar human presence. Here, I studied the relationship between human disturbance, urbanization, and the ability to solve a novel foraging problem in wild-caught juvenile house finches (Haemorhous mexicanus). This songbird is a successful urban dweller and native to the deserts of the southwestern United States. In captivity, finches captured from both urban and rural populations were presented with a novel foraging task (sliding a lid covering their typical food dish) and then exposed to regular periods of high or low human disturbance over several weeks before they were again presented with the task. I found that rural birds exposed to frequent human disturbance showed reduced task performance compared to human-disturbed urban finches. This result is consistent with the hypothesis that acclimation to human presence protects urban birds from reduced cognition, unlike rural birds. Some behaviors related to solving the problem (e.g. pecking at and eying the dish) also differed between urban and rural finches, possibly indicating that urban birds were less neophobic and more exploratory than rural ones. However, these results were unclear. Overall, these findings suggest that urbanization and acclimation to human presence can strongly predict avian response to novelty and cognitive challenges.

Contributors

Agent

Created

Date Created
  • 2015-05

133801-Thumbnail Image.png

Effects of urbanization on the nutritional physiology and gut microbiome of house sparrows (Passer domesticus)

Description

The natural habitat as well as the food abundance and food sources of avian species is changing due to urbanization, and such anthropocentric actions could lead to devastating impacts on

The natural habitat as well as the food abundance and food sources of avian species is changing due to urbanization, and such anthropocentric actions could lead to devastating impacts on bird populations. As changes in distribution and nutrition are thought to be related to the gut microbiome, the goal of this study was to determine the relationship between nutritional markers, including body mass, gizzard mass, triglycerides, free glycerol and glycogen, and the gut microbiome in urban and rural house sparrows (Passer domesticus), to understand physiological differences between urban and rural house sparrows. We hypothesized that increased access to human refuse, through urbanization, may significantly alter the gut microbiome and thus, the nutritional physiology-the effects of foods on metabolism-of urban birds. Fecal samples were collected from rural (n=13) and urban (n=7) birds to characterize the gut microbiome and plasma samples were collected to measure nutritional markers using commercially available kits. Following euthanasia, liver samples were collected to measure triglycerides, free glycerol and glycogen. While there were no significant differences in circulating triglycerides or free glycerol between populations, urban birds had significantly greater blood glucose (p=0.046) compared to rural birds, when normalized to body mass. Additionally, rural birds had significantly more plasma uric acid (p=0.016) and liver free glycerol (p=0.044). Higher blood glucose suggests greater accessibility to carbohydrates in an urban setting or higher rates of gluconeogenesis. Uric acid is a byproduct of purine catabolism and a potent antioxidant. Thus, higher uric acid suggests that rural birds may utilize more protein for energy. Finally, higher liver free glycerol in rural birds suggests they metabolize more fat but could also indicate that urban birds have greater glycerol gluconeogenesis, which may consume free glycerol resulting in higher glucose concentrations. However, the current study does not provide evidence for this as there were no significant differences in the gluconeogenic enzyme PEPCK-C levels between urban and rural house sparrows (p= 0.165). While triglyceride, glucose, and uric acid levels differed between urban and rural birds, there were additionally no significant differences in the gut microbiome, indicating that although nutritional physiology can be affected by distribution and varying food availability and sources, differences in the gut microbiome are evident at the phyla level.

Contributors

Agent

Created

Date Created
  • 2018-05

133854-Thumbnail Image.png

Seed Beetle Abundance and Diversity in Urban and Rural Sites

Description

The spread of urbanization leads to habitat fragmentation and deterioration and changes the composition of ecosystems for species all over the world. Different groups of organisms are impacted differently, and

The spread of urbanization leads to habitat fragmentation and deterioration and changes the composition of ecosystems for species all over the world. Different groups of organisms are impacted differently, and insects have experienced loss in diversity and abundance due to changing environmental factors. Here, I collected seed beetles across 12 urban and rural sites in Phoenix, Arizona, to analyze the effects of urbanization and habitat variation on beetle diversity and abundance. I found that urbanization, host tree origin, and environmental factors such as tree diversity and density had no impact on overall beetle diversity and abundance. Beetles were found to have higher density on hosts with a higher density of pods. In assessing individual beetle species, some beetles exhibited higher density in rural sites with native trees, and some were found more commonly on nonnative tree species. The observed differences in beetle density demonstrate the range of effects urbanization and environmental features can have on insect species. By studying ecosystem interactions alongside changing environments, we can better predict the role urbanization and human development can have on different organisms.

Contributors

Agent

Created

Date Created
  • 2018-05

Urbanization alters herbivore rodent composition but not abundance

Description

Desert ecosystems are one of the fastest urbanizing areas on the planet. This rapid shift has the potential to alter the abundances and species richness of herbivore and plant communities.

Desert ecosystems are one of the fastest urbanizing areas on the planet. This rapid shift has the potential to alter the abundances and species richness of herbivore and plant communities. Herbivores, for example, are expected to be more abundant in urban desert remnant parks located within cities due to anthropogenic activities that concentrate food resources and reduce native predator populations. Despite this assumption, previous research conducted around Phoenix has shown that top-down herbivory led to equally reduced plant biomass. It is unclear if this insignificant difference in herbivory at rural and urban sites is due to unaltered desert herbivore populations or altered activity levels that counteract abundance differences. Vertebrate herbivore populations were surveyed at four sites inside and four sites outside of the core of Phoenix during fall 2014 and spring 2015 in order to determine whether abundances and richness differ significantly between urban and rural sites. In order to survey species composition and abundance at these sites, 100 Sherman traps and 8 larger wire traps that are designed to attract and capture small vertebrates such as mice, rats, and squirrels, were set at each site for two consecutive trap nights. Results suggest that the commonly assumed effect of urbanization on herbivore abundances does not apply to small rodent herbivore populations in a desert city, as overall small rodent abundances were statistically similar regardless of location. Though a significant difference was not found for species richness, a significant difference between small rodent genera richness at these sites was observed.

Contributors

Agent

Created

Date Created
  • 2016-05

137189-Thumbnail Image.png

Developing Anthropogenic Heating Profiles for Urban Areas across the United States

Description

Urban areas produce an urban heat island (UHI), which is manifest as warmer temperatures compared to the surrounding and less developed areas. While it is understood that UHI's are warmer

Urban areas produce an urban heat island (UHI), which is manifest as warmer temperatures compared to the surrounding and less developed areas. While it is understood that UHI's are warmer than their surrounding areas, attributing the amount of heat added by the urban area is not easily determined. Current generation modeling systems require diurnal anthropogenic heating profiles. Development of diurnal cycle profiles of anthropogenic heating will help the modeling community as there is currently no database for anthropogenic heating profiles for cities across the United States. With more accurate anthropogenic heating profiles, climate models will be better able to show how humans directly impact the urban climate. This research attempts to create anthropogenic heating profiles for 61 cities in the United States. The method used climate, electricity, natural gas, and transportation data to develop anthropogenic heating profiles for each state. To develop anthropogenic heating profiles, profiles are developed for buildings, transportation, and human metabolism using the most recently available data. Since utilities are reluctant to release data, the building energy profile is developed using statewide electricity by creating a linear regression between the climate and electricity usage. A similar method is used to determine the contribution of natural gas consumption. These profiles are developed for each month of the year, so annual changes in anthropogenic heating can be seen. These profiles can then be put into climate models to enable more accurate urban climate modeling.

Contributors

Created

Date Created
  • 2014-05

135672-Thumbnail Image.png

The Effects of Urban Edge Proximity on Mesopredator Populations Adjacent to Gold Canyon, Az

Description

Urbanization is a landscape-level alteration of habitat that can lead to habitat fragmentation, degradation, and the introduction of nonnative species. Due to their life history characteristics, mammalian predators are particularly

Urbanization is a landscape-level alteration of habitat that can lead to habitat fragmentation, degradation, and the introduction of nonnative species. Due to their life history characteristics, mammalian predators are particularly vulnerable to these effects. The categorization of many species as synanthropic, benefiting from human development, has been difficult as species have a gradient of responses to urbanization. Although coyotes, gray foxes and bobcats have all been shown to benefit from light to moderate levels of urbanization, often due to the increase in food resources, they typically require access to natural areas as escape cover. Camera traps at varying distances were used to document mesopredator response to the urban edge of Gold Canyon, Arizona from November 2015 through March 2016. Coyote, gray fox and bobcat relative abundance did not vary with distance to urban edge during this time period. Although, negative trends suggest that a larger scale study may reveal a negative relationship between distance to urban edge and mesopredator abundance for all 3 of these species. The efficacy of different baits at increasing mesopredator detections was also tested, with insignificant results. However, coyotes seemed to be more likely to interact with Carman's Raccoon Lure No. 2 than coyote urine. Understanding the responses of mesopredators to urbanization will allow us to better coexist with these vulnerable species as land continues to be developed at high rates across the globe.

Contributors

Agent

Created

Date Created
  • 2016-05