Matching Items (2)
Filtering by

Clear all filters

152971-Thumbnail Image.png
Description
The effects of aging on muscular efficiency are controversial. Proponents for increased efficiency suggest that age-related changes in muscle enhance efficiency in senescence. Exercise study results are mixed due to varying modalities, ages, and efficiency calculations. The present study attempted to address oxygen uptake, caloric expenditure, walking economy, and gross
et

The effects of aging on muscular efficiency are controversial. Proponents for increased efficiency suggest that age-related changes in muscle enhance efficiency in senescence. Exercise study results are mixed due to varying modalities, ages, and efficiency calculations. The present study attempted to address oxygen uptake, caloric expenditure, walking economy, and gross
et cycling efficiency in young (18-59 years old) and older (60-81 years old) adults (N=444). Walking was performed at three miles per hour by 86 young (mean = 29.60, standard deviation (SD) = 10.50 years old) and 121 older adults (mean = 66.80, SD = 4.50 years old). Cycling at 50 watts (60-70 revolutions per minute) was performed by 116 young (mean= 29.00, SD= 10.00 years old) and 121 older adults (m = 67.10 SD = 4.50 years old). Steady-state sub-maximal gross
et oxygen uptake and caloric expenditures from each activity and rest were analyzed. Net walking economy was represented by net caloric expenditure (kilocalories/kilogram/min). Cycling measures included percent gross
et cycling efficiency (kilo-calorie derived). Linear regressions were used to assess each measure as a function of age. Differences in age group means were assessed using independent t-tests for each modality (alpha = 0.05). No significant differences in mean oxygen uptake nor walking economy were found between young and older walkers (p>0.05). Older adults performing cycle ergometry demonstrated lower gross
et oxygen uptakes and lower gross caloric expenditures (p< 0.05).
ContributorsFlores, Michelle (Author) / Gaesser, Glenn A (Committee member) / Campbell, Kathryn D (Committee member) / Angadi, Siddhartha S (Committee member) / Arizona State University (Publisher)
Created2014
190955-Thumbnail Image.png
Description
PURPOSE: The aim of this study was to determine if the linear and nonlinear components of the energy expenditure-walking speed relationship are influenced by body mass index (BMI; kg/m2). The secondary aims were to determine if the relationship was influenced by age, height, and sex. METHODS: Subjects (n=182)

PURPOSE: The aim of this study was to determine if the linear and nonlinear components of the energy expenditure-walking speed relationship are influenced by body mass index (BMI; kg/m2). The secondary aims were to determine if the relationship was influenced by age, height, and sex. METHODS: Subjects (n=182) walked at 2, 3, and 4 mph for six minutes each with oxygen consumption (V̇O2; ml/kg/min) and measured via indirect calorimetry and converted to energy expenditure (EE; W/kg). Because of the curvilinear change in metabolic rate with increase in walking speed, polynomial random coefficient regression (PRCR) was employed to produce a model which captures the slope of change. Individual level linear and quadratic coefficients were analyzed for relationships with BMI, age, height, and sex. RESULTS: The net V̇O2 regression formula for walking was 1.79(x-3)2+4.97(x-3)+9.32 where x is speed in mph. BMI was modestly correlated with the quadratic coefficients (r = 0.15 to 0.17, p = 0.02 to 0.04) but not the linear coefficients (r =0.02- 0.07, p = 0.36-0.78) for V̇O2 and EE. There was no difference in coefficients between normal BMI (18.5-<25.0 kg/m2), overweight (25-<30.0 kg/m2) and obese (>30.0 kg/m2) groups (H = 1.5-4.0, p = 0.13-0.48). Delta V̇O2 for 2-3 mph, 3-4 mph, and 2-4 mph were not correlated with BMI (r = -0.02 - 0.13, p = 0.11 - 0.41). Height was inversely correlated with the linear and quadratic coefficients (r = -0.32 to -0.14, p = 0.09). Age was not correlated to coefficients (r = -0.16 to 0.32, p = 0.06-0.44). The coefficients for sex were not different after controlling for height in ANCOVA (F(1,179)=0.3-2.9, p >0.09). Age was not correlated to coefficients (r = -0.16 to –0.32, p = 0.06-0.44). CONCLUSION: Although BMI had a modest relationship with the quadratic coefficient, it explained less than 3% of the variance in V̇O2 or EE. Combined with the absence of a delta V̇O2 or a linear component, BMI does not influence the energy expenditure-walking speed relationship. Height explained up to 9% of the variance in the coefficients and eliminated apparent sex differences. Age was not related to the coefficients.
ContributorsBeaumont, Joshua S (Author) / Gaesser, Glenn A (Thesis advisor) / Angadi, Siddhartha S (Thesis advisor) / Adams, Marc A (Committee member) / Dickinson, Jared M (Committee member) / Peterson, Daniel S (Committee member) / Arizona State University (Publisher)
Created2023