Matching Items (4)

152971-Thumbnail Image.png

The energy cost of walking and cycling in young and older adults

Description

The effects of aging on muscular efficiency are controversial. Proponents for increased efficiency suggest that age-related changes in muscle enhance efficiency in senescence. Exercise study results are mixed due to

The effects of aging on muscular efficiency are controversial. Proponents for increased efficiency suggest that age-related changes in muscle enhance efficiency in senescence. Exercise study results are mixed due to varying modalities, ages, and efficiency calculations. The present study attempted to address oxygen uptake, caloric expenditure, walking economy, and gross
et cycling efficiency in young (18-59 years old) and older (60-81 years old) adults (N=444). Walking was performed at three miles per hour by 86 young (mean = 29.60, standard deviation (SD) = 10.50 years old) and 121 older adults (mean = 66.80, SD = 4.50 years old). Cycling at 50 watts (60-70 revolutions per minute) was performed by 116 young (mean= 29.00, SD= 10.00 years old) and 121 older adults (m = 67.10 SD = 4.50 years old). Steady-state sub-maximal gross
et oxygen uptake and caloric expenditures from each activity and rest were analyzed. Net walking economy was represented by net caloric expenditure (kilocalories/kilogram/min). Cycling measures included percent gross
et cycling efficiency (kilo-calorie derived). Linear regressions were used to assess each measure as a function of age. Differences in age group means were assessed using independent t-tests for each modality (alpha = 0.05). No significant differences in mean oxygen uptake nor walking economy were found between young and older walkers (p>0.05). Older adults performing cycle ergometry demonstrated lower gross
et oxygen uptakes and lower gross caloric expenditures (p< 0.05).

Contributors

Agent

Created

Date Created
  • 2014

157291-Thumbnail Image.png

The Use of a Verification Phase in Determination of VO2max in Older Adults

Description

Maximal oxygen uptake (VO2max) declines with age and is a predictor of morbidity and mortality risks. Due to these implications, accurate assessment and determination of VO2max are important for the

Maximal oxygen uptake (VO2max) declines with age and is a predictor of morbidity and mortality risks. Due to these implications, accurate assessment and determination of VO2max are important for the older population. Without the presence of a VO2 plateau, secondary criteria are used to determine whether the test resulted in a maximal value. However, inconsistent secondary criteria do not account for intersubject variability. To circumvent this issue, a verification phase following a traditional ramp assessment may be utilized. The purpose of this study was to compare verification phase strategies in older adults. A secondary purpose of this study was to examine the repeatability of the ramp assessment performed during each visit. Twenty-two older adults between 60 and 80 years of age were recruited to participate in the study. Each subject completed two experimental trials in a randomized, counterbalanced cross-over design. Both trials consisted of a ramp test and verification phase at either 85% (VP85) or 110% (VP110) of the peak work rate achieved during the ramp (Ramp85 and Ramp110, respectively). Expired gases and heart rate (HR) were monitored continuously and measured every ten seconds. VO2peak was determined by the highest 30-second averages for the ramp and verification phases. No significant differences were observed for absolute (L/min) VO2peak between VP85 (P = 0.679) or VP110 (P = 0.200) and the associated ramp. There was also no significant difference in maximal HR between VP85 (P = 0.243) or VP110 (P = 0.085) and the associated ramp. However, individual data shows that 36% of individuals achieved a 2% greater VO2 (L/min) during the VP85 compared to the Ramp85, while only 15% of subjects achieved a 2% greater VO2 (L/min) during the VP110 compared to Ramp110. No significant differences (P < 0.05) were found for most variables between Ramp1 and Ramp2. These data suggest that if a verification phase is employed for VO2max assessment in otherwise healthy older adults, a power slightly below peak work rate may provide a more accurate assessment compared to a power slightly above peak work rate.

Contributors

Agent

Created

Date Created
  • 2019

154794-Thumbnail Image.png

Effects of a fat-sugar supplemented diet, with and without exercise training, on body fat mass and selected cardiometabolic risk markers in overweight and obese, sedentary males

Description

The winter holiday period has been highlighted as a major risk period for weight gain due to excess caloric intake in the form of fat and sugar. Furthermore, diets high

The winter holiday period has been highlighted as a major risk period for weight gain due to excess caloric intake in the form of fat and sugar. Furthermore, diets high in fat and sugar have been implicated in the pathogenesis of diabetes and cardiovascular disease. Exercise aids in the prevention of weight/fat gain, and prevents deleterious changes in cardiometabolic function. The objective of this study was to examine the effects of a fat-sugar supplemented diet, with and without two different exercise training protocols, on body composition, glycemic control and other markers of cardiovascular disease in an at-risk population of overweight and obese males. Twenty-seven, healthy overweight/obese (BMI >25 kg/m2) males were fed 2 donuts per day, 6 days/week, for four weeks, while maintaining their current diet. In addition, all subjects were randomized to one of the following conditions: sedentary control, 1,000 kcal/week moderate-intensity continuous training (MICT) (50% of peak oxygen consumption), or 1,000 kcal/week high-intensity interval training (HIIT) (90-95% of peak heart rate). Supervised exercise training was performed 4 days/week on a cycle ergometer. Changes in body weight and composition, endothelial function, arterial stiffness, glycemic control, blood lipids and cardiorespiratory fitness (CRF) were assessed before and after the intervention. Body weight, lean mass and visceral fat increased significantly in HIIT (p<0.05) and were unchanged in MICT. There was a trend for a significant increase in body weight (p=0.07) and lean mass (p=0.11) in control. Glycemic control during the 2-h OGTT improved significantly in MICT and control, with no change in HIIT. Hepatic insulin resistance index (IRI) and 30-min insulin during the OGTT improved significantly after MICT and worsened following control (p=0.03), while HIIT was unchanged. CRF increased significantly in both HIIT and MICT, with no change in control (p<0.001). There were no significant changes in other markers of cardiovascular disease. The addition of a fat-sugar supplement (~14,500 kcal) over a 4-week period was not sufficient to induce deleterious changes in body composition and cardiometabolic health in overweight/obese young males. Exercise training did not afford overweight/obese males additional health benefits, with the exception of improvements in fitness and hepatic IRI.

Contributors

Agent

Created

Date Created
  • 2016

156078-Thumbnail Image.png

Effects of muscle contraction frequency on blood glucose control, insulin sensitivity, endothelial function and blood pressure among obese males

Description

Cardiovascular disease and diabetes are major health burdens. Diabetes is a primary risk factor of cardiovascular disease, and there is a strong link between obesity and risk of developing diabetes.

Cardiovascular disease and diabetes are major health burdens. Diabetes is a primary risk factor of cardiovascular disease, and there is a strong link between obesity and risk of developing diabetes. With the prevalence of prediabetes highest among overweight/obese individuals, investigation into preventative strategies are needed. Aerobic exercise is a potent stimulus for both insulin and non-insulin dependent glucose uptake into the skeletal muscle. A single exercise session can improve insulin sensitivity within hours after exercise. The effects of intensity, type, and volume of exercise on glucose homeostasis have been studied extensively; however, controlling for muscle contraction frequency with a constant exercise intensity and workload has not been examined. The purpose of this study was to compare muscle contraction frequency during aerobic exercise by altering cycling cadence on insulin sensitivity and vascular health. Eleven obese males (age=28yr, BMI=35kg/m2) completed three conditions in random order: 1) control-no exercise; 2) 45-min cycling at 45 revolutions per minute (45RPM) at 65-75%VO2max; 3) 45-min cycling at 90RPM at 65-75%VO2max. Glucose control and insulin sensitivity were assessed with oral glucose tolerance tests (OGTT) 4 hours post-exercise. Vascular health was assessed via flow-mediated dilation (FMD) pre-exercise, 1-hr and 2-hr post exercise and ambulatory blood pressure was assessed pre-exercise, and continually every 15 min post-exercise. Linear mixed models were used to compare the mean differences in outcome variables. There were no significant differences found between control and both exercise conditions for all OGTT outcomes and no differences were found between control and exercise in FMD (all, p>0.05). Significant effects for exercise were found for both brachial and central blood pressure measures. Brachial systolic blood pressures were lower at 2- and 4-hr post-exercise by approximately -10 and -8mmHg, respectively (p<0.001 and p=0.004) versus control. Central systolic blood pressures were lower at 2-, 3-, and 4-hr post-exercise by approximately -8, -9 and -6mmHg, respectively (p<0.001, p=0.021 and p=0.004) versus control. In conclusion, aerobic exercise, regardless of muscle contraction frequency, were unable to effect glucose control and insulin sensitivity. Similarly, there was no effect on vascular function. However, there was a significant effect of aerobic exercise on reducing post-exercise blood pressure.

Contributors

Agent

Created

Date Created
  • 2017