Matching Items (684)
Filtering by

Clear all filters

151720-Thumbnail Image.png
Description
Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides

Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.
ContributorsGuo, Da (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Sankin, Igor (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsWasbotten, Leia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
151635-Thumbnail Image.png
Description
Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and

Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and poet Willa Cather (1873-1947). Larsen has produced two song cycles on works from Cather's substantial output of fiction: one based on Cather's short story, "Eric Hermannson's Soul," titled Margaret Songs: Three Songs from Willa Cather (1996); and later, My Antonia (2000), based on Cather's novel of the same title. In Margaret Songs, Cather's poetry and short stories--specifically the character of Margaret Elliot--combine with Larsen's unique compositional style to create a surprising collaboration. This study explores how Larsen in these songs delves into the emotional and psychological depths of Margaret's character, not fully formed by Cather. It is only through Larsen's music and Cather's poetry that Margaret's journey through self-discovery and love become fully realized. This song cycle is a glimpse through the eyes of two prominent female artists on the societal pressures placed upon Margaret's character, many of which still resonate with women in today's culture. This study examines the work Margaret Songs by discussing Willa Cather, her musical influences, and the conditions surrounding the writing of "Eric Hermannson's Soul." It looks also into Cather's influence on Libby Larsen and the commission leading to Margaret Songs. Finally, a description of the musical, dramatic, and textual content of the songs completes this interpretation of the interactions of Willa Cather, Libby Larsen, and the character of Margaret Elliot.
ContributorsMcLain, Christi Marie (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Holbrook, Amy (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
151660-Thumbnail Image.png
Description
Puerto Rico has produced many important composers who have contributed to the musical culture of the nation during the last 200 years. However, a considerable amount of their music has proven to be difficult to access and may contain numerous errors. This research project intends to contribute to the accessibility

Puerto Rico has produced many important composers who have contributed to the musical culture of the nation during the last 200 years. However, a considerable amount of their music has proven to be difficult to access and may contain numerous errors. This research project intends to contribute to the accessibility of such music and to encourage similar studies of Puerto Rican music. This study focuses on the music of Héctor Campos Parsi (1922-1998), one of the most prominent composers of the 20th century in Puerto Rico. After an overview of the historical background of music on the island and the biography of the composer, four works from his art song repertoire are given for detailed examination. A product of this study is the first corrected edition of his cycles Canciones de Cielo y Agua, Tres Poemas de Corretjer, Los Paréntesis, and the song Majestad Negra. These compositions date from 1947 to 1959, and reflect both the European and nationalistic writing styles of the composer during this time. Data for these corrections have been obtained from the composer's manuscripts, published and unpublished editions, and published recordings. The corrected scores are ready for publication and a compact disc of this repertoire, performed by soprano Melliangee Pérez and the author, has been recorded to bring to life these revisions. Despite the best intentions of the author, the various copyright issues have yet to be resolved. It is hoped that this document will provide the foundation for a resolution and that these important works will be available for public performance and study in the near future.
ContributorsRodríguez Morales, Luis F., 1980- (Author) / Campbell, Andrew (Thesis advisor) / Buck, Elizabeth (Committee member) / Holbrook, Amy (Committee member) / Kopta, Anne (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
151374-Thumbnail Image.png
Description
ABSTRACT As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year

ABSTRACT As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kWdc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kWac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power loss of 61% (from 100 kW to 39 kW) over 26+ years. Encapsulation browning and non-cell interconnect ribbon breakages were determined to be the primary causes for the power loss.
ContributorsOlakonu, Kolapo (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsYi, Joyce (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-22
152663-Thumbnail Image.png
Description
Increasing the conversion efficiencies of photovoltaic (PV) cells beyond the single junction theoretical limit is the driving force behind much of third generation solar cell research. Over the last half century, the experimental conversion efficiency of both single junction and tandem solar cells has plateaued as manufacturers and researchers have

Increasing the conversion efficiencies of photovoltaic (PV) cells beyond the single junction theoretical limit is the driving force behind much of third generation solar cell research. Over the last half century, the experimental conversion efficiency of both single junction and tandem solar cells has plateaued as manufacturers and researchers have optimized various materials and structures. While existing materials and technologies have remarkably good conversion efficiencies, they are approaching their own limits. For example, tandem solar cells are currently well developed commercially but further improvements through increasing the number of junctions struggle with various issues related to material interfacial defects. Thus, there is a need for novel theoretical and experimental approaches leading to new third generation cell structures. Multiple exciton generation (MEG) and intermediate band (IB) solar cells have been proposed as third generation alternatives and theoretical modeling suggests they can surpass the detailed balance efficiency limits of single junction and tandem solar cells. MEG or IB solar cell has a variety of advantages enabling the use of low bandgap materials. Integrating MEG and IB with other cell types to make novel solar cells (such as MEG with tandem, IB with tandem or MEG with IB) potentially offers improvements by employing multi-physics effects in one device. This hybrid solar cell should improve the properties of conventional solar cells with a reduced number of junction, increased light-generated current and extended material selections. These multi-physics effects in hybrid solar cells can be achieved through the use of nanostructures taking advantage of the carrier confinement while using existing solar cell materials with excellent characteristics. This reduces the additional cost to develop novel materials and structures. In this dissertation, the author develops thermodynamic models for several novel types of solar cells and uses these models to optimize and compare their properties to those of existing PV cells. The results demonstrate multiple advantages from combining MEG and IB technology with existing solar cell structures.
ContributorsLee, Jongwon (Author) / Honsberg, C. (Christiana B.) (Thesis advisor) / Bowden, Stuart (Committee member) / Roedel, Ronald (Committee member) / Goodnick, Stephen (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2014
152163-Thumbnail Image.png
Description
This is a two-part thesis: Part 1 of this thesis tests and validates the methodology and mathematical models of the International Electrotechnical Commission (IEC) 61853-2 standard for the measurement of angle of incidence (AOI) effects on photovoltaic modules. Flat-plate photovoltaic modules in the field operate under a wide range of

This is a two-part thesis: Part 1 of this thesis tests and validates the methodology and mathematical models of the International Electrotechnical Commission (IEC) 61853-2 standard for the measurement of angle of incidence (AOI) effects on photovoltaic modules. Flat-plate photovoltaic modules in the field operate under a wide range of environmental conditions. The purpose of IEC 61853-2 is to characterize photovoltaic modules' performance under specific environmental conditions. Part 1 of this report focuses specifically on AOI. To accurately test and validate IEC 61853-2 standard for measuring AOI, meticulous experimental setup and test procedures were followed. Modules of five different photovoltaic technology types with glass superstrates were tested. Test results show practically identical relative light transmission plots for all five test modules. The experimental results were compared to theoretical and empirical models for relative light transmission of air-glass interface. IEC 61853-2 states "for the flat glass superstrate modules, the AOI test does not need to be performed; rather, the data of a flat glass air interface can be used." The results obtained in this thesis validate this statement. This work was performed in collaboration with another Master of Science student (Surynarayana Janakeeraman) and the test results are presented in two masters theses. Part 2 of this thesis is to develop non-intrusive techniques to accurately measure the quantum efficiency (QE) of a single-junction crystalline silicon cell within a commercial module. This thesis will describe in detail all the equipment and conditions necessary to measure QE and discuss the factors which may influence this measurement. The ability to utilize a non-intrusive test to measure quantum efficiency of a cell within a module is extremely beneficial for reliability testing of commercial modules. Detailed methodologies for this innovative test procedure are not widely available in industry because equipment and measurement techniques have not been explored extensively. This paper will provide a literature review describing relevant theories and measurement techniques related to measuring the QE of a cell within a module. The testing methodology and necessary equipment will be described in detail. Results and conclusions provide the overall accuracy of the measurements and discuss the parameters affecting these measurements.
ContributorsKnisely, Brett (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2013
152908-Thumbnail Image.png
Description
A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling

A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling technology for this particular circuit to attain good efficiency.

Traditionally, grid connected PV inverters required a transformer for isolation and safety. The disadvantage of high frequency transformer based inverters is complexity and cost. Transformerless inverters have become more popular recently, although they can be challenging to implement because of possible high frequency currents through the PV array's stay capacitance to earth ground. Conventional PV inverters also typically utilize electrolytic capacitors for bulk power buffering. However such capacitors can be prone to decreased reliability.

The solution proposed here to solve these problems is a bi directional buck boost converter combined with half bridge inverters. This configuration enables grounding of the array's negative terminal and passive power decoupling with only film capacitors.

Several aspects of the proposed converter are discussed. First a literature review is presented on the issues to be addressed. The proposed circuit is then presented and examined in detail. This includes theory of operation, component selection, and control systems. An efficiency analysis is also conducted. Simulation results are then presented that show correct functionality. A hardware prototype is built and experiment results also prove the concept. Finally some further developments are mentioned.

As a summary of the research a new topology and control technique were developed. The resultant circuit is a high performance transformerless PV inverter with upwards of 97% efficiency.
ContributorsBreazeale, Lloyd C (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2014
153066-Thumbnail Image.png
Description
There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits for system operations and enhance opera-tional performance of the distribution

There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits for system operations and enhance opera-tional performance of the distribution system. However, high penetration of PV resources can give rise to operating conditions which do not arise in traditional systems and one of the potential issues that needs to be addressed involves impact on power quality of the system with respect to the spectral distortion in voltages and currents.

The test bed feeder model representing a real operational distribution feeder is developed in OpenDSS and the feeder modeling takes into consideration the ob-jective of analysis and frequency of interest. Extensive metering infrastructure and measurements are utilized for validation of the model at harmonic frequencies. The harmonic study performed is divided into two sections: study of impact of non-linear loads on total harmonic voltage and current distortions and study of impact of PV resources on high frequency spectral distortion in voltages and cur-rents. The research work incorporates different harmonic study methodologies such as harmonic and high frequency power flow, and frequency scan study. The general conclusions are presented based on the simulation results and in addition, scope for future work is discussed.
ContributorsJoshi, Titiksha Vjay (Author) / Heydt, Gerald T (Thesis advisor) / Ayyanar, Raja (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2014