Matching Items (28)

132596-Thumbnail Image.png

The Water Loss and Solar Panel Operating Condition Effects of Using Solar Photovoltaic Panels to Shade a Body of Water

Description

Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic

Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic modules to shade water can potentially help diminish the issues of water and power. Using the setup of a PV module shading water, a stand-alone PV module, and unshaded water, it was found that shading water can reduce evaporation and lower PV module operating temperature at the same time. Using averaged data from two days of testing, the volume per unit surface area of water that evaporated per hour was 0.319 cm3/cm2 less for the shaded water compared to the unshaded water. The evaporation rates found in the experiment are compared to those of Lake Mead to see the amount of water lost on a large scale. For the operating temperature of the PV module, the module used for shading had a consistently lower temperature than the stand-alone module. On the first day, the shading module had an average temperature 5.1 C lower than the stand-alone module average temperature. On day two, the shading module had an average temperature 3.4 C lower than the stand-alone module average temperature. Using average temperatures between the two days from 10:30am and 4:45pm, the average daily temperature of the panel used for shading was 4.5C less than the temperature of the stand-alone panel. These results prove water shading by solar PV modules to be effective in reducing evaporation and lowering module operating temperature. Last, suggestions for future studies are discussed, such as performance analysis of the PV modules in this setting, economic analysis of using PV modules as shading, and the isolation of the different factors of evaporation (temperature, wind speed, and humidity).

Contributors

Agent

Created

Date Created
  • 2019-05

132279-Thumbnail Image.png

Advanced PV Inverter with Grid Supporting Functions using Wide Bandgap Devices and the IEEE 1547-2018

Description

Energy poverty is the lack of access to the basic energy resources needed for human development. Fossil fuels, through their heavy emissions and transience, are slowly but surely leaving room

Energy poverty is the lack of access to the basic energy resources needed for human development. Fossil fuels, through their heavy emissions and transience, are slowly but surely leaving room for change in the energy sector as renewable energy sources rise to the challenge of sustainable, clean, and cost-efficient energy production. Because it is mostly located in rural areas, solutions crafted against energy poverty need to be appropriate for those areas and their development objectives. As top contenders, photovoltaics insertion in the energy market has largely soared creating, therefore, a need for its distributed energy resources to interconnect appropriately to the area electrical power system. EEE Senior Design Team 11 saw in this the need to design an advanced photovoltaic inverter with those desired grid functions but also leveraging the technological superiority of wide bandgap devices over silicon semiconductors. The honors creative project is an integral part of the senior design capstone project for Team 11. It has a two-front approach, first exploring the IEEE 1547-2018 standard on distributed energy resources; then focusing on the author’s personal contribution to the aforementioned senior design project: digital signal processing and grid support implementation. This report serves as an accompanying write up to the creative project.

Contributors

Agent

Created

Date Created
  • 2019-05

158089-Thumbnail Image.png

Design and Development of High Performance III-Nitrides Photovoltaics

Description

Wurtzite (In, Ga, Al) N semiconductors, especially InGaN material systems, demonstrate immense promises for the high efficiency thin film photovoltaic (PV) applications for future generation. Their unique and intriguing merits

Wurtzite (In, Ga, Al) N semiconductors, especially InGaN material systems, demonstrate immense promises for the high efficiency thin film photovoltaic (PV) applications for future generation. Their unique and intriguing merits include continuously tunable wide band gap from 0.70 eV to 3.4 eV, strong absorption coefficient on the order of ∼105 cm−1, superior radiation resistance under harsh environment, and high saturation velocities and high mobility. Calculation from the detailed balance model also revealed that in multi-junction (MJ) solar cell device, materials with band gaps higher than 2.4 eV are required to achieve PV efficiencies greater than 50%, which is practically and easily feasible for InGaN materials. Other state-of-art modeling on InGaN solar cells also demonstrate great potential for applications of III-nitride solar cells in four-junction solar cell devices as well as in the integration with a non-III-nitride junction in multi-junction devices.

This dissertation first theoretically analyzed loss mechanisms and studied the theoretical limit of PV performance of InGaN solar cells with a semi-analytical model. Then three device design strategies are proposed to study and improve PV performance: band polarization engineering, structural design and band engineering. Moreover, three physical mechanisms related to high temperature performance of InGaN solar cells have been thoroughly investigated: thermal reliability issue, enhanced external quantum efficiency (EQE) and conversion efficiency with rising temperatures and carrier dynamics and localization effects inside nonpolar m-plane InGaN quantum wells (QWs) at high temperatures. In the end several future work will also be proposed.

Although still in its infancy, past and projected future progress of device design will ultimately achieve this very goal that III-nitride based solar cells will be indispensable for today and future’s society, technologies and society.

Contributors

Agent

Created

Date Created
  • 2020

153236-Thumbnail Image.png

Growth and characterization of pyrite thin films for photovoltaic applications

Description

A series of pyrite thin films were synthesized using a novel sequential evaporation

technique to study the effects of substrate temperature on deposition rate and micro-structure of

the deposited material. Pyrite was

A series of pyrite thin films were synthesized using a novel sequential evaporation

technique to study the effects of substrate temperature on deposition rate and micro-structure of

the deposited material. Pyrite was deposited in a monolayer-by-monolayer fashion using

sequential evaporation of Fe under high vacuum, followed by sulfidation at high S pressures

(typically > 1 mTorr to 1 Torr). Thin films were synthesized using two different growth processes; a

one-step process in which a constant growth temperature is maintained throughout growth, and a

three-step process in which an initial low temperature seed layer is deposited, followed by a high

temperature layer, and then finished with a low temperature capping layer. Analysis methods to

analyze the properties of the films included Glancing Angle X-Ray Diffraction (GAXRD),

Rutherford Back-scattering Spectroscopy (RBS), Transmission Electron Microscopy (TEM),

Secondary Ion Mass Spectroscopy (SIMS), 2-point IV measurements, and Hall effect

measurements. Our results show that crystallinity of the pyrite thin film improves and grain size

increases with increasing substrate temperature. The sticking coefficient of Fe was found to

increase with increasing growth temperature, indicating that the Fe incorporation into the growing

film is a thermally activated process.

Contributors

Agent

Created

Date Created
  • 2014

152081-Thumbnail Image.png

Growth and characterization of novel thin films for microelectronic applications

Description

I studied the properties of novel Co2FeAl0.5Si0.5 (CFAS), ZnGeAs2, and FeS2 (pyrite) thin films for microelectronic applications ranging from spintronic to photovoltaic. CFAS is a half metal with theoretical spin

I studied the properties of novel Co2FeAl0.5Si0.5 (CFAS), ZnGeAs2, and FeS2 (pyrite) thin films for microelectronic applications ranging from spintronic to photovoltaic. CFAS is a half metal with theoretical spin polarization of 100%. I investigated its potential as a spin injector, for spintronic applications, by studying the critical steps involved in the injection of spin polarized electron populations from tunnel junctions containing CFAS electrodes. Epitaxial CFAS thin films with L21 structure and saturation magnetizations of over 1200 emu/cm3 were produced by optimization of the sputtering growth conditions. Point contact Andreev reflection measurements show that the spin polarization at the CFAS electrode surface exceeds 70%. Analyses of the electrical properties of tunnel junctions with a superconducting Pb counter-electrode indicate that transport through native Al oxide barriers is mostly from direct tunneling, while that through the native CFAS oxide barriers is not. ZnGeAs2 is a semiconductor comprised of only inexpensive and earth-abundant elements. The electronic structure and defect properties are similar in many ways to GaAs. Thus, in theory, efficient solar cells could be made with ZnGeAs2 if similar quality material to that of GaAs could be produced. To understand the thermochemistry and determine the rate limiting steps of ZnGeAs2 thin-film synthesis, the (a) thermal decomposition rate and (b) elemental composition and deposition rate of films were measured. It is concluded that the ZnGeAs2 thin film synthesis is a metastable process with an activation energy of 1.08±0.05 eV for the kinetically-limited decomposition rate and an evaporation coefficient of ~10-3. The thermochemical analysis presented here can be used to predict optimal conditions of ZnGeAs2 physical vapor deposition and thermal processing. Pyrite (FeS2) is another semiconductor that has tremendous potential for use in photovoltaic applications if high quality materials could be made. Here, I present the layer-by-layer growth of single-phase pyrite thin-films on heated substrates using sequential evaporation of Fe under high-vacuum followed by sulfidation at S pressures between 1 mTorr and 1 Torr. High-resolution transmission electron microscopy reveals high-quality, defect-free pyrite grains were produces by this method. It is demonstrated that epitaxial pyrite layer was produced on natural pyrite substrates with this method.

Contributors

Agent

Created

Date Created
  • 2013

154979-Thumbnail Image.png

Improved convex optimal decision-making processes in distribution systems: enable grid integration of photovoltaic resources and distributed energy storage

Description

This research mainly focuses on improving the utilization of photovoltaic (PV) re-sources in distribution systems by reducing their variability and uncertainty through the integration of distributed energy storage (DES) devices,

This research mainly focuses on improving the utilization of photovoltaic (PV) re-sources in distribution systems by reducing their variability and uncertainty through the integration of distributed energy storage (DES) devices, like batteries, and smart PV in-verters. The adopted theoretical tools include statistical analysis and convex optimization. Operational issues have been widely reported in distribution systems as the penetration of PV resources has increased. Decision-making processes for determining the optimal allo-cation and scheduling of DES, and the optimal placement of smart PV inverters are con-sidered. The alternating current (AC) power flow constraints are used in these optimiza-tion models. The first two optimization problems are formulated as quadratically-constrained quadratic programming (QCQP) problems while the third problem is formu-lated as a mixed-integer QCQP (MIQCQP) problem. In order to obtain a globally opti-mum solution to these non-convex optimization problems, convex relaxation techniques are introduced. Considering that the costs of the DES are still very high, a procedure for DES sizing based on OpenDSS is proposed in this research to avoid over-sizing.

Some existing convex relaxations, e.g. the second order cone programming (SOCP) relaxation and semidefinite programming (SDP) relaxation, which have been well studied for the optimal power flow (OPF) problem work unsatisfactorily for the DES and smart inverter optimization problems. Several convex constraints that can approximate the rank-1 constraint X = xxT are introduced to construct a tighter SDP relaxation which is referred to as the enhanced SDP (ESDP) relaxation using a non-iterative computing framework. Obtaining the convex hull of the AC power flow equations is beneficial for mitigating the non-convexity of the decision-making processes in power systems, since the AC power flow constraints exist in many of these problems. The quasi-convex hull of the quadratic equalities in the AC power bus injection model (BIM) and the exact convex hull of the quadratic equality in the AC power branch flow model (BFM) are proposed respectively in this thesis. Based on the convex hull of BFM, a novel convex relaxation of the DES optimizations is proposed. The proposed approaches are tested on a real world feeder in Arizona and several benchmark IEEE radial feeders.

Contributors

Agent

Created

Date Created
  • 2016

157910-Thumbnail Image.png

Application of Radiovoltmeters: Quick and Quantitative Power Determination of Individual PV Modules in a String without using I-V Curve Tracers

Description

The goal of any solar photovoltaic (PV) system is to generate maximum energy throughout its lifetime. The parameters that can affect PV module power output include: solar irradiance, temperature, soil

The goal of any solar photovoltaic (PV) system is to generate maximum energy throughout its lifetime. The parameters that can affect PV module power output include: solar irradiance, temperature, soil accumulation, shading, encapsulant browning, encapsulant delamination, series resistance increase due to solder bond degradation and corrosion and shunt resistance decrease due to potential induced degradation, etc. Several PV modules together in series makes up a string, and in a power plant there are a number of these strings in parallel which can be referred to as an array. Ideally, PV modules in a string should be identically matched to attain maximum power output from the entire string. Any underperforming module or mismatch among modules within a string can reduce the power output. The goal of this project is to quickly identify and quantitatively determine the underperforming module(s) in an operating string without the use of an I-V curve tracer, irradiance sensor or temperature sensor. This goal was achieved by utilizing Radiovoltmeters (RVM). In this project, it is demonstrated that the voltages at maximum power point (Vmax) of all the individual modules in a string can be simultaneously and quantitatively obtained using RVMs at a single irradiance, single module operating temperature, single spectrum and single angle of incidence. By combining these individual module voltages (Vmax) with the string current (Imax) using a Hall sensor, the power output of individual modules can be obtained, quickly and quantitatively.

Contributors

Agent

Created

Date Created
  • 2019

150421-Thumbnail Image.png

Investigation of 1,900 individual field aged photovoltaic modules for potential induced degradation (PID) in a positive biased power plant

Description

Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures.

Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in various configurations is required. A detailed investigation of 1,900 field aged (12-18 years) PV modules deployed in a power plant application was conducted for this study. Analysis was based on the current-voltage (I-V) measurement of all the 1,900 modules individually. I-V curve data of individual modules formed the basis for calculating the performance degradation of the modules. The percentage performance degradation and rates of degradation were compared to an earlier study done at the same plant. The current research was primarily focused on identifying the extent of potential induced degradation (PID) of individual modules with reference to the negative ground potential. To investigate this, the arrangement and connection of the individual modules/strings was examined in detail. The study also examined the extent of underperformance of every series string due to performance mismatch of individual modules in that string. The power loss due to individual module degradation and module mismatch at string level was then compared to the rated value.

Contributors

Agent

Created

Date Created
  • 2011

149523-Thumbnail Image.png

Environmental, policy and social analysis of photovoltaic technologies

Description

Many expect renewable energy technologies to play a leading role in a sustainable energy supply system and to aid the shift away from an over-reliance on traditional hydrocarbon resources in

Many expect renewable energy technologies to play a leading role in a sustainable energy supply system and to aid the shift away from an over-reliance on traditional hydrocarbon resources in the next few decades. This dissertation develops environmental, policy and social models to help understand various aspects of photovoltaic (PV) technologies. The first part of this dissertation advances the life cycle assessment (LCA) of PV systems by expanding the boundary of included processes using hybrid LCA and accounting for the technology-driven dynamics of environmental impacts. Hybrid LCA extends the traditional method combining bottom-up process-sum and top-down economic input-output (EIO) approaches. The embodied energy and carbon of multi-crystalline silicon photovoltaic systems are assessed using hybrid LCA. From 2001 to 2010, the embodied energy and carbon fell substantially, indicating that technological progress is realizing reductions in environmental impacts in addition to lower module price. A variety of policies support renewable energy adoption, and it is critical to make them function cooperatively. To reveal the interrelationships among these policies, the second part of this dissertation proposes three tiers of policy architecture. This study develops a model to determine the specific subsidies required to support a Renewable Portfolio Standard (RPS) goal. The financial requirements are calculated (in two scenarios) and compared with predictable funds from public sources. A main result is that the expected investments to achieve the RPS goal far exceed the economic allocation for subsidy of distributed PV. Even with subsidies there are often challenges with social acceptance. The third part of this dissertation originally develops a fuzzy logic inference model to relate consumers' attitudes about the technology such as perceived cost, maintenance, and environmental concern to their adoption intention. Fuzzy logic inference model is a type of soft computing models. It has the advantage of dealing with imprecise and insufficient information and mimicking reasoning processes of human brains. This model is implemented in a case study of residential PV adoption using data through a survey of homeowners in Arizona. The output of this model is the purchasing probability of PV.

Contributors

Agent

Created

Date Created
  • 2010

149426-Thumbnail Image.png

Meta-stability of crystalline thin-film photovoltaic devices

Description

Given the growing market in solar energy, specifically by the thin-film technologies, it is imperative that adequate and accurate standards be developed for these newer photovoltaic devices. Cadmium Telluride, CdTe,

Given the growing market in solar energy, specifically by the thin-film technologies, it is imperative that adequate and accurate standards be developed for these newer photovoltaic devices. Cadmium Telluride, CdTe, one of the major players in the thin-film PV industry is currently rated and certified using standards that have been developed under the context of older technologies. The behavior of CdTe has been shown to be unique enough to suggesting that standards be revised. In this research, methods built on previous industry and independent studies are used to identify these unique behaviors. As well new methods are developed to further characterize CdTe modules in the context of current standards. Clear transient and meta-stable behavior is identified across modules from four different commercial manufacturers. Conclusions drawn from this study show illumination and temperature hysteresis effects on module ratings. Furthermore, suggestions for further study are given that could be used to define parameters for any reexamination of module standards.

Contributors

Agent

Created

Date Created
  • 2010