Matching Items (13)
Filtering by

Clear all filters

161425-Thumbnail Image.png
Description
Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the importance of touch in social communication, which is absent in traditional

Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the importance of touch in social communication, which is absent in traditional communication modes like a phone call or a video call. By studying how humans interpret haptically generated messages, this research aims to create a new communication channel for humans. This novel device will be worn on the user's forearm and has a broad scope of applications such as navigation, social interactions, notifications, health care, and education. The research methods include testing patterns in the vibro-thermal modality while noting its realizability and accuracy. Different patterns can be controlled and generated through an Android application connected to the proposed device via Bluetooth. Experimental results indicate that the patterns SINGLE TAP and HOLD/SQUEEZE were easily identifiable and more relatable to social interactions. In contrast, other patterns like UP-DOWN, DOWN-UP, LEFTRIGHT, LEFT-RIGHT, LEFT-DIAGONAL, and RIGHT-DIAGONAL were less identifiable and less relatable to social interactions. Finally, design modifications are required if complex social patterns are needed to be displayed on the forearm.
ContributorsGharat, Shubham Shriniwas (Author) / McDaniel, Troy (Thesis advisor) / Redkar, Sangram (Thesis advisor) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
161976-Thumbnail Image.png
Description
Applications over a gesture-based human-computer interface (HCI) require a new user login method with gestures because it does not have traditional input devices. For example, a user may be asked to verify the identity to unlock a device in a mobile or wearable platform, or sign in to a virtual

Applications over a gesture-based human-computer interface (HCI) require a new user login method with gestures because it does not have traditional input devices. For example, a user may be asked to verify the identity to unlock a device in a mobile or wearable platform, or sign in to a virtual site over a Virtual Reality (VR) or Augmented Reality (AR) headset, where no physical keyboard or touchscreen is available. This dissertation presents a unified user login framework and an identity input method using 3D In-Air-Handwriting (IAHW), where a user can log in to a virtual site by writing a passcode in the air very fast like a signature. The presented research contains multiple tasks that span motion signal modeling, user authentication, user identification, template protection, and a thorough evaluation in both security and usability. The results of this research show around 0.1% to 3% Equal Error Rate (EER) in user authentication in different conditions as well as 93% accuracy in user identification, on a dataset with over 100 users and two types of gesture input devices. Besides, current research in this area is severely limited by the availability of the gesture input device, datasets, and software tools. This study provides an infrastructure for IAHW research with an open-source library and open datasets of more than 100K IAHW hand movement signals. Additionally, the proposed user identity input method can be extended to a general word input method for both English and Chinese using limited training data. Hence, this dissertation can help the research community in both cybersecurity and HCI to explore IAHW as a new direction, and potentially pave the way to practical adoption of such technologies in the future.
ContributorsLu, Duo (Author) / Huang, Dijiang (Thesis advisor) / Li, Baoxin (Committee member) / Zhang, Junshan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
131996-Thumbnail Image.png
Description
Although many data visualization diagrams can be made accessible for individuals who are blind or visually impaired, they often do not present the information in a way that intuitively allows readers to easily discern patterns in the data. In particular, accessible node graphs tend to use speech to describe the

Although many data visualization diagrams can be made accessible for individuals who are blind or visually impaired, they often do not present the information in a way that intuitively allows readers to easily discern patterns in the data. In particular, accessible node graphs tend to use speech to describe the transitions between nodes. While the speech is easy to understand, readers can be overwhelmed by too much speech and may not be able to discern any structural patterns which occur in the graphs. Considering these limitations, this research seeks to find ways to better present transitions in node graphs.

This study aims to gain knowledge on how sequence patterns in node graphs can be perceived through speech and nonspeech audio. Users listened to short audio clips describing a sequence of transitions occurring in a node graph. User study results were evaluated based on accuracy and user feedback. Five common techniques were identified through the study, and the results will be used to help design a node graph tool to improve accessibility of node graph creation and exploration for individuals that are blind or visually impaired.
ContributorsDarmawaskita, Nicole (Author) / McDaniel, Troy (Thesis director) / Duarte, Bryan (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12