Matching Items (243)
Filtering by

Clear all filters

132570-Thumbnail Image.png
DescriptionThe goal of this study is to equip administrators and instructors with a deeper understanding of the apparent cheating problem in Computer Science courses, with proposed solutions to lower academic dishonesty from the students’ perspective.
ContributorsAl Yasari, Farah (Co-author) / Alyasari, Farah (Co-author) / Tadayon-Navabi, Farideh (Thesis director) / Bazzi, Rida (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165590-Thumbnail Image.png
Description

In the United States, the word "earthquake" is extensively used. This natural disaster has a year-round impact on numerous states across the country. Earthquakes are simply more than a natural calamity; they also have a negative psychological impact. Earthquake safety measures are essential for ensuring citizens' safety. This paper proposes,

In the United States, the word "earthquake" is extensively used. This natural disaster has a year-round impact on numerous states across the country. Earthquakes are simply more than a natural calamity; they also have a negative psychological impact. Earthquake safety measures are essential for ensuring citizens' safety. This paper proposes, a technique for evaluating earthquake safety activities and instructing individuals in selecting appropriate precautions. Earthquake protection using Reach.love plus Amazon Alexa is special in that it uses cutting-edge virtual reality technology. The platform developed by Reach.love takes earthquake prevention to a new and innovative direction. The feeling of presence in a VR headset linked within Reach.love, allows the user to feel that an earthquake is occurring right now. Additionally, each location includes audio instructions that explain what to do in specific scenarios. The user can practice and mentally train to respond appropriately when a real earthquake happens, comparable to a 3D drill. Finally, the user will be able to utilize Amazon Alexa for help within the rooms in Reach.love to improve the experience of earthquake safety training. For example, if the user speaks to Alexa during the simulation and says, "Alexa, turn off the audio instructions," Alexa will do so, and the user will no longer hear them. Alexa would be the user's personal assistant during the training of earthquake protection.

ContributorsKaur, Simran (Author) / Johnson, Mina (Thesis director) / de la Pena, Nonny (Committee member) / Barrett, The Honors College (Contributor) / Computer Science - BS (Contributor)
Created2022-05
Description
Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team at Meteor Studio has developed an algorithm called Xblock that solves this issue using a crosstalk cancellation technique. This thesis project expands upon the existing Xblock IoT system by providing a way to test the accuracy of the directionality of sounds generated with spatial audio. More specifically, the objective is to determine whether the usage of Xblock with smart speakers can provide generalized audio localization, which refers to the ability to detect a general direction of where a sound might be coming from. This project also expands upon the existing Xblock technique to integrate voice commands, where users can verbalize the name of a lost item using the phrase, “Find [item]”, and the IoT system will use spatial audio to guide them to it.
ContributorsSong, Lucy (Author) / LiKamWa, Robert (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
164825-Thumbnail Image.png
Description

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team at Meteor Studio has developed an algorithm called Xblock that solves this issue using a crosstalk cancellation technique. This thesis project expands upon the existing Xblock IoT system by providing a way to test the accuracy of the directionality of sounds generated with spatial audio. More specifically, the objective is to determine whether the usage of Xblock with smart speakers can provide generalized audio localization, which refers to the ability to detect a general direction of where a sound might be coming from. This project also expands upon the existing Xblock technique to integrate voice commands, where users can verbalize the name of a lost item using the phrase, “Find [item]”, and the IoT system will use spatial audio to guide them to it.

ContributorsSong, Lucy (Author) / LiKamWa, Robert (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
164826-Thumbnail Image.jpg
Description

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team at Meteor Studio has developed an algorithm called Xblock that solves this issue using a crosstalk cancellation technique. This thesis project expands upon the existing Xblock IoT system by providing a way to test the accuracy of the directionality of sounds generated with spatial audio. More specifically, the objective is to determine whether the usage of Xblock with smart speakers can provide generalized audio localization, which refers to the ability to detect a general direction of where a sound might be coming from. This project also expands upon the existing Xblock technique to integrate voice commands, where users can verbalize the name of a lost item using the phrase, “Find [item]”, and the IoT system will use spatial audio to guide them to it.

ContributorsSong, Lucy (Author) / LiKamWa, Robert (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

Find My College is an app to help people who are interested in pursuing a collegiate degree; find a college/s that is right for them. This app is designed using the Ionic Framework, to allow access across all operating systems such as Android and MacOS. We wanted to create an

Find My College is an app to help people who are interested in pursuing a collegiate degree; find a college/s that is right for them. This app is designed using the Ionic Framework, to allow access across all operating systems such as Android and MacOS. We wanted to create an app that people using Android or Apple can use, and this framework allows us to do that. The app is very user friendly and straightforward, which makes it usable to all types of people. It will be a free to use app that can be improved and adjusted if changes are needed/wanted.

ContributorsSolis, Jalen (Author) / Vadlamudi, Sai (Co-author) / Miller, Phillip (Thesis director) / De Luca, Gennaro (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165162-Thumbnail Image.png
ContributorsSolis, Jalen (Author) / Vadlamudi, Sai (Co-author) / Miller, Phillip (Thesis director) / De Luca, Gennaro (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165163-Thumbnail Image.png
ContributorsSolis, Jalen (Author) / Vadlamudi, Sai (Co-author) / Miller, Phillip (Thesis director) / De Luca, Gennaro (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165391-Thumbnail Image.png
Description
Programming front-end human computer interfaces follows a unique approach of iterative design and testing to produce a creative model envisioned by the developer and designer. Small but frequent changes to visual or audio aspects of the program are commonplace in order to implement different design ideas, implementations, and adjustments. Functional

Programming front-end human computer interfaces follows a unique approach of iterative design and testing to produce a creative model envisioned by the developer and designer. Small but frequent changes to visual or audio aspects of the program are commonplace in order to implement different design ideas, implementations, and adjustments. Functional Reactive Programming (FRP) acts as a compelling programming paradigm towards this iterative design process, following its strength in utilizing time-varying values. Therefore, this thesis will introduce Coda, a Visual Programming Language (VPL) focused on developing audio interfaces using FRP. Coda focuses on the goal of streamlining audio interface prototyping and development, through two primary features: rapid but sensible code hot-reloading, and the use of time and I/O as an interactive development tool. These features allow Coda to greatly reduce the development cycle time commonly seen in typical, text-based programming languages. Coda also comes in its own integrated development environment (IDE) in the form of a web-application.
ContributorsShrestha, Abhash (Author) / Omais, Adam (Co-author) / De Luca, Gennaro (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165392-Thumbnail Image.png
Description
Programming front-end human computer interfaces follows a unique approach of iterative design and testing to produce a creative model envisioned by the developer and designer. Small but frequent changes to visual or audio aspects of the program are commonplace in order to implement different design ideas, implementations, and adjustments. Functional

Programming front-end human computer interfaces follows a unique approach of iterative design and testing to produce a creative model envisioned by the developer and designer. Small but frequent changes to visual or audio aspects of the program are commonplace in order to implement different design ideas, implementations, and adjustments. Functional Reactive Programming (FRP) acts as a compelling programming paradigm towards this iterative design process, following its strength in utilizing time-varying values. Therefore, this thesis will introduce Coda, a Visual Programming Language (VPL) focused on developing audio interfaces using FRP. Coda focuses on the goal of streamlining audio interface prototyping and development, through two primary features: rapid but sensible code hot-reloading, and the use of time and I/O as an interactive development tool. These features allow Coda to greatly reduce the development cycle time commonly seen in typical, text-based programming languages. Coda also comes in its own integrated development environment (IDE) in the form of a web-application.
ContributorsOmais, Adam (Author) / Shrestha, Abhash (Co-author) / De Luca, Gennaro (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05