Matching Items (16)
Filtering by

Clear all filters

150319-Thumbnail Image.png
Description
This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity and unstable behavior, very few techniques currently exist that are

This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity and unstable behavior, very few techniques currently exist that are capable of identifying this system. The challenge in identification also lies in the coupled behavior of the system and in the difficulty of obtaining the full-range dynamics. The differential equations describing the system dynamics are determined from measurements of the system's input-output behavior. These equations are assumed to consist of the superposition, with unknown weights, of a small number of terms drawn from a large library of nonlinear terms. Under this assumption, compressed sensing allows the constituent library elements and their corresponding weights to be identified by decomposing a time-series signal of the system's outputs into a sparse superposition of corresponding time-series signals produced by the library components. The most popular techniques for non-linear system identification entail the use of ANN's (Artificial Neural Networks), which require a large number of measurements of the input and output data at high sampling frequencies. The method developed in this project requires very few samples and the accuracy of reconstruction is extremely high. Furthermore, this method yields the Ordinary Differential Equation (ODE) of the system explicitly. This is in contrast to some ANN approaches that produce only a trained network which might lose fidelity with change of initial conditions or if facing an input that wasn't used during its training. This technique is expected to be of value in system identification of complex dynamic systems encountered in diverse fields such as Biology, Computation, Statistics, Mechanics and Electrical Engineering.
ContributorsNaik, Manjish Arvind (Author) / Cochran, Douglas (Thesis advisor) / Kovvali, Narayan (Committee member) / Kawski, Matthias (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2011
156822-Thumbnail Image.png
Description
Hardware implementation of deep neural networks is earning significant importance nowadays. Deep neural networks are mathematical models that use learning algorithms inspired by the brain. Numerous deep learning algorithms such as multi-layer perceptrons (MLP) have demonstrated human-level recognition accuracy in image and speech classification tasks. Multiple layers of processing elements

Hardware implementation of deep neural networks is earning significant importance nowadays. Deep neural networks are mathematical models that use learning algorithms inspired by the brain. Numerous deep learning algorithms such as multi-layer perceptrons (MLP) have demonstrated human-level recognition accuracy in image and speech classification tasks. Multiple layers of processing elements called neurons with several connections between them called synapses are used to build these networks. Hence, it involves operations that exhibit a high level of parallelism making it computationally and memory intensive. Constrained by computing resources and memory, most of the applications require a neural network which utilizes less energy. Energy efficient implementation of these computationally intense algorithms on neuromorphic hardware demands a lot of architectural optimizations. One of these optimizations would be the reduction in the network size using compression and several studies investigated compression by introducing element-wise or row-/column-/block-wise sparsity via pruning and regularization. Additionally, numerous recent works have concentrated on reducing the precision of activations and weights with some reducing to a single bit. However, combining various sparsity structures with binarized or very-low-precision (2-3 bit) neural networks have not been comprehensively explored. Output activations in these deep neural network algorithms are habitually non-binary making it difficult to exploit sparsity. On the other hand, biologically realistic models like spiking neural networks (SNN) closely mimic the operations in biological nervous systems and explore new avenues for brain-like cognitive computing. These networks deal with binary spikes, and they can exploit the input-dependent sparsity or redundancy to dynamically scale the amount of computation in turn leading to energy-efficient hardware implementation. This work discusses configurable spiking neuromorphic architecture that supports multiple hidden layers exploiting hardware reuse. It also presents design techniques for minimum-area/-energy DNN hardware with minimal degradation in accuracy. Area, performance and energy results of these DNN and SNN hardware is reported for the MNIST dataset. The Neuromorphic hardware designed for SNN algorithm in 28nm CMOS demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4 - 773 (nJ) per classification). The optimized DNN hardware designed in 40nm CMOS that combines 8X structured compression and 3-bit weight precision showed 98.4% accuracy at 33 (nJ) per classification.
ContributorsKolala Venkataramanaiah, Shreyas (Author) / Seo, Jae-Sun (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2018
157015-Thumbnail Image.png
Description
Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data,

Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data, robustness to noise in previously unseen data and high inference accuracy. With the ability to learn useful features from raw sensor data, deep learning algorithms have out-performed tradinal AI algorithms and pushed the boundaries of what can be achieved with AI. In this work, we demonstrate the power of deep learning by developing a neural network to automatically detect cough instances from audio recorded in un-constrained environments. For this, 24 hours long recordings from 9 dierent patients is collected and carefully labeled by medical personel. A pre-processing algorithm is proposed to convert event based cough dataset to a more informative dataset with start and end of coughs and also introduce data augmentation for regularizing the training procedure. The proposed neural network achieves 92.3% leave-one-out accuracy on data captured in real world.

Deep neural networks are composed of multiple layers that are compute/memory intensive. This makes it difficult to execute these algorithms real-time with low power consumption using existing general purpose computers. In this work, we propose hardware accelerators for a traditional AI algorithm based on random forest trees and two representative deep convolutional neural networks (AlexNet and VGG). With the proposed acceleration techniques, ~ 30x performance improvement was achieved compared to CPU for random forest trees. For deep CNNS, we demonstrate that much higher performance can be achieved with architecture space exploration using any optimization algorithms with system level performance and area models for hardware primitives as inputs and goal of minimizing latency with given resource constraints. With this method, ~30GOPs performance was achieved for Stratix V FPGA boards.

Hardware acceleration of DL algorithms alone is not always the most ecient way and sucient to achieve desired performance. There is a huge headroom available for performance improvement provided the algorithms are designed keeping in mind the hardware limitations and bottlenecks. This work achieves hardware-software co-optimization for Non-Maximal Suppression (NMS) algorithm. Using the proposed algorithmic changes and hardware architecture

With CMOS scaling coming to an end and increasing memory bandwidth bottlenecks, CMOS based system might not scale enough to accommodate requirements of more complicated and deeper neural networks in future. In this work, we explore RRAM crossbars and arrays as compact, high performing and energy efficient alternative to CMOS accelerators for deep learning training and inference. We propose and implement RRAM periphery read and write circuits and achieved ~3000x performance improvement in online dictionary learning compared to CPU.

This work also examines the realistic RRAM devices and their non-idealities. We do an in-depth study of the effects of RRAM non-idealities on inference accuracy when a pretrained model is mapped to RRAM based accelerators. To mitigate this issue, we propose Random Sparse Adaptation (RSA), a novel scheme aimed at tuning the model to take care of the faults of the RRAM array on which it is mapped. Our proposed method can achieve inference accuracy much higher than what traditional Read-Verify-Write (R-V-W) method could achieve. RSA can also recover lost inference accuracy 100x ~ 1000x faster compared to R-V-W. Using 32-bit high precision RSA cells, we achieved ~10% higher accuracy using fautly RRAM arrays compared to what can be achieved by mapping a deep network to an 32 level RRAM array with no variations.
ContributorsMohanty, Abinash (Author) / Cao, Yu (Thesis advisor) / Seo, Jae-Sun (Committee member) / Vrudhula, Sarma (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2018
154756-Thumbnail Image.png
Description
There have been extensive research in how news and twitter feeds can affect the outcome of a given stock. However, a majority of this research has studied the short term effects of sentiment with a given stock price. Within this research, I studied the long-term effects of a

There have been extensive research in how news and twitter feeds can affect the outcome of a given stock. However, a majority of this research has studied the short term effects of sentiment with a given stock price. Within this research, I studied the long-term effects of a given stock price using fundamental analysis techniques. Within this research, I collected both sentiment data and fundamental data for Apple Inc., Microsoft Corp., and Peabody Energy Corp. Using a neural network algorithm, I found that sentiment does have an effect on the annual growth of these companies but the fundamentals are more relevant when determining overall growth. The stocks which show more consistent growth hold more importance on the previous year’s stock price but companies which have less consistency in their growth showed more reliance on the revenue growth and sentiment on the overall company and CEO. I discuss how I collected my research data and used a multi-layered perceptron to predict a threshold growth of a given stock. The threshold used for this particular research was 10%. I then showed the prediction of this threshold using my perceptron and afterwards, perform an f anova test on my choice of features. The results showed the fundamentals being the better predictor of stock information but fundamentals came in a close second in several cases, proving sentiment does hold an effect over long term growth.
ContributorsReeves, Tyler Joseph (Author) / Davulcu, Hasan (Thesis advisor) / Baral, Chitta (Committee member) / Cesta, John (Committee member) / Arizona State University (Publisher)
Created2016
155726-Thumbnail Image.png
Description
Phishing is a form of online fraud where a spoofed website tries to gain access to user's sensitive information by tricking the user into believing that it is a benign website. There are several solutions to detect phishing attacks such as educating users, using blacklists or extracting phishing characteristics found

Phishing is a form of online fraud where a spoofed website tries to gain access to user's sensitive information by tricking the user into believing that it is a benign website. There are several solutions to detect phishing attacks such as educating users, using blacklists or extracting phishing characteristics found to exist in phishing attacks. In this thesis, we analyze approaches that extract features from phishing websites and train classification models with extracted feature set to classify phishing websites. We create an exhaustive list of all features used in these approaches and categorize them into 6 broader categories and 33 finer categories. We extract 59 features from the URL, URL redirects, hosting domain (WHOIS and DNS records) and popularity of the website and analyze their robustness in classifying a phishing website. Our emphasis is on determining the predictive performance of robust features. We evaluate the classification accuracy when using the entire feature set and when URL features or site popularity features are excluded from the feature set and show how our approach can be used to effectively predict specific types of phishing attacks such as shortened URLs and randomized URLs. Using both decision table classifiers and neural network classifiers, our results indicate that robust features seem to have enough predictive power to be used in practice.
ContributorsNamasivayam, Bhuvana Lalitha (Author) / Bazzi, Rida (Thesis advisor) / Zhao, Ziming (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2017
168467-Thumbnail Image.png
Description
Neural networks are increasingly becoming attractive solutions for automated systems within automotive, aerospace, and military industries.Since many applications in such fields are both real-time and safety-critical, strict performance and reliability constraints must be considered. To achieve high performance, specialized architectures are required.Given that over 90% of the workload in modern

Neural networks are increasingly becoming attractive solutions for automated systems within automotive, aerospace, and military industries.Since many applications in such fields are both real-time and safety-critical, strict performance and reliability constraints must be considered. To achieve high performance, specialized architectures are required.Given that over 90% of the workload in modern neural network topologies is dominated by matrix multiplication, accelerating said algorithm becomes of paramount importance. Modern neural network accelerators, such as Xilinx's Deep Processing Unit (DPU), adopt efficient systolic-like architectures. Thanks to their high degree of parallelism and design flexibility, Field-Programmable Gate Arrays (FPGAs) are among the most promising devices for speeding up matrix multiplication and neural network computation.However, SRAM-based FPGAs are also known to suffer from radiation-induced upsets in their configuration memories. To achieve high reliability, hardening strategies must be put in place.However, traditional modular redundancy of inherently expensive modules is not always feasible due to limited resource availability on target devices. Therefore, more efficient and cleverly designed hardening methods become a necessity. For instance, Algorithm-Based Fault-Tolerance (ABFT) exploits algorithm characteristics to deliver error detection/correction capabilities at significantly lower costs. First, experimental results with Xilinx's DPU indicate that failure rates can be over twice as high as the limits specified for terrestrial applications.In other words, the undeniable need for hardening in the state-of-the-art neural network accelerator for FPGAs is demonstrated. Later, an extensive multi-level fault propagation analysis is presented, and an ultra-low-cost algorithm-based error detection strategy for matrix multiplication is proposed.By considering the specifics of FPGAs' fault model, this novel hardening method decreases costs of implementation by over a polynomial degree, when compared to state-of-the-art solutions. A corresponding architectural implementation is suggested, incurring area and energy overheads lower than 1% for the vast majority of systolic arrays dimensions. Finally, the impact of fundamental design decisions, such as data precision in processing elements, and overall degree of parallelism, on the reliability of hypothetical neural network accelerators is experimentally investigated.A novel way of predicting the compound failure rate of inherently inaccurate algorithms/applications in the presence of radiation is also provided.
ContributorsLibano, Fabiano (Author) / Brunhaver, John (Thesis advisor) / Clark, Lawrence (Committee member) / Quinn, Heather (Committee member) / Rech, Paolo (Committee member) / Arizona State University (Publisher)
Created2021
168398-Thumbnail Image.png
Description
With the extensive technological progress made in the areas of drives, sensors and processing, exoskeletons and other wearable devices have become more feasible. However, the stringent requirements in regards to size and weight continue to exert a strong influence on the system-wide design of these devices and present many obstacles

With the extensive technological progress made in the areas of drives, sensors and processing, exoskeletons and other wearable devices have become more feasible. However, the stringent requirements in regards to size and weight continue to exert a strong influence on the system-wide design of these devices and present many obstacles to a successful solution. On the other hand, while the area of controls has seen a significant amount of progress, there also remains a large potential for improvements. This dissertation approaches the design and control of wearable devices from a systems perspective and provides a framework to successfully overcome the often-encountered obstacles with optimal solutions. The electronics, drive and control system design for the HeSA hip exoskeleton project and APEx hip exoskeleton project are presented as examples of how this framework is used to design wearable devices. In the area of control algorithms, a real-time implementation of the Fast Fourier Transform (FFT) is presented as an alternative approach to extracting amplitude and frequency information of a time varying signal. In comparison to the peak search method (PSM), the FFT allows extracting basic gait signal information at a faster rate because time windows can be chosen to be less than the fundamental gait frequency. The FFT is implemented on a 16-bit processor and the results show the real-time detection of amplitude and frequency coefficients at an update rate of 50Hz. Finally, a novel neural networks based approach to detecting human gait activities is presented. Existing neural networks often require vast amounts of data along with significant computer resources. Using Neural Ordinary Differential Equations (Neural ODEs) it is possible to distinguish between seven different daily activities using a significantly smaller data set, lower system resources and a time window of only 0.1 seconds.
ContributorsBoehler, Alexander (Author) / Sugar, Thomas (Thesis advisor) / Redkar, Sangram (Committee member) / Hollander, Kevin (Committee member) / Arizona State University (Publisher)
Created2021
157482-Thumbnail Image.png
Description
Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a tutoring companion can scaffold the learning process for students.

This work

Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a tutoring companion can scaffold the learning process for students.

This work contributes to the construction of a tutoring companion designed to provide this feedback to students. It aims to bridge the gap between the messages the compiler delivers, and the support required for a novice student to understand the problem and fix their code. Particularly, it provides support for students learning about recursion in a beginning university Java programming course. Besides also providing affective support, a tutoring companion could be more effective when it is embedded into the environment that the student is already using, instead of an additional tool for the student to learn. The proposed Tutoring Companion is embedded into the Eclipse Integrated Development Environment (IDE).

This thesis focuses on the reasoning model for the Tutoring Companion and is developed using the techniques of a neural network. While a student uses the IDE, the Tutoring Companion collects 16 data points, including the presence of certain key words, cyclomatic complexity, and error messages from the compiler, every time it detects an event, such as a run attempt, debug attempt, or a request for help, in the IDE. This data is used as inputs to the neural network. The neural network produces a correlating single output code for the feedback to be provided to the student, which is displayed in the IDE.

The effectiveness of the approach is examined among 38 Computer Science students who solve a programming assignment while the Tutoring Companion assists them. Data is collected from these interactions, including all inputs and outputs for the neural network, and students are surveyed regarding their experience. Results suggest that students feel supported while working with the Companion and promising potential for using a neural network with an embedded companion in the future. Challenges in developing an embedded companion are discussed, as well as opportunities for future work.
ContributorsDay, Melissa (Author) / Gonzalez-Sanchez, Javier (Thesis advisor) / Bansal, Ajay (Committee member) / Mehlhase, Alexandra (Committee member) / Arizona State University (Publisher)
Created2019
158867-Thumbnail Image.png
Description
The accurate monitoring of the bulk transmission system of the electric power grid by sensors, such as Remote Terminal Units (RTUs) and Phasor Measurement Units (PMUs), is essential for maintaining the reliability of the modern power system. One of the primary objectives of power system monitoring is the identification of

The accurate monitoring of the bulk transmission system of the electric power grid by sensors, such as Remote Terminal Units (RTUs) and Phasor Measurement Units (PMUs), is essential for maintaining the reliability of the modern power system. One of the primary objectives of power system monitoring is the identification of the snapshots of the system at regular intervals by performing state estimation using the available measurements from the sensors. The process of state estimation corresponds to the estimation of the complex voltages at all buses of the system. PMU measurements play an important role in this regard, because of the time-synchronized nature of these measurements as well as the faster rates at which they are produced. However, a model-based linear state estimator created using PMU-only data requires complete observability of the system by PMUs for its continuous functioning. The conventional model-based techniques also make certain assumptions in the modeling of the physical system, such as the constant values of the line parameters. The measurement error models in the conventional state estimators are also assumed to follow a Gaussian distribution. In this research, a data mining technique using Deep Neural Networks (DNNs) is proposed for performing a high-speed, time-synchronized state estimation of the transmission system of the power system. The proposed technique uses historical data to identify the correlation between the measurements and the system states as opposed to directly using the physical model of the system. Therefore, the highlight of the proposed technique is its ability to provide an accurate, fast, time-synchronized estimate of the system states even in the absence of complete system observability by PMUs.
The state estimator is formulated for the IEEE 118-bus system and its reliable performance is demonstrated in the presence of redundant observability, complete observability, and incomplete observability. The robustness of the state estimator is also demonstrated by performing the estimation in presence of Non-Gaussian measurement errors and varying line parameters. The consistency of the DNN state estimator is demonstrated by performing state estimation for an entire day.
ContributorsChandrasekaran, Harish (Author) / Pal, Anamitra (Thesis advisor) / Sen, Arunabha (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2020
187454-Thumbnail Image.png
Description
This dissertation presents novel solutions for improving the generalization capabilities of deep learning based computer vision models. Neural networks are known to suffer a large drop in performance when tested on samples from a different distribution than the one on which they were trained. The proposed solutions, based on latent

This dissertation presents novel solutions for improving the generalization capabilities of deep learning based computer vision models. Neural networks are known to suffer a large drop in performance when tested on samples from a different distribution than the one on which they were trained. The proposed solutions, based on latent space geometry and meta-learning, address this issue by improving the robustness of these models to distribution shifts. Through the use of geometrical alignment, state-of-the-art domain adaptation and source-free test-time adaptation strategies are developed. Additionally, geometrical alignment can allow classifiers to be progressively adapted to new, unseen test domains without requiring retraining of the feature extractors. The dissertation also presents algorithms for enabling in-the-wild generalization without needing access to any samples from the target domain. Other causes of poor generalization, such as data scarcity in critical applications and training data with high levels of noise and variance, are also explored. To address data scarcity in fine-grained computer vision tasks such as object detection, novel context-aware augmentations are suggested. While the first four chapters focus on general-purpose computer vision models, strategies are also developed to improve robustness in specific applications. The efficiency of training autonomous agents for visual navigation is improved by incorporating semantic knowledge, and the integration of domain experts' knowledge allows for the realization of a low-cost, minimally invasive generalizable automated rehabilitation system. Lastly, new tools for explainability and model introspection using counter-factual explainers trained through interval-based uncertainty calibration objectives are presented.
ContributorsThopalli, Kowshik (Author) / Turaga, Pavan (Thesis advisor) / Thiagarajan, Jayaraman J (Committee member) / Li, Baoxin (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2023