Matching Items (22)

134107-Thumbnail Image.png

Analyzing LinkedIn Profiles Using Machine Learning

Description

Understanding the necessary skills required to work in an industry is a difficult task with many potential uses. By being able to predict the industry of a person based on

Understanding the necessary skills required to work in an industry is a difficult task with many potential uses. By being able to predict the industry of a person based on their skills, professional social networks could make searching better with automated tagging, advertisers can target more carefully, and students can better find a career path that fits their skillset. The aim in this project is to apply deep learning to the world of professional networking. Deep Learning is a type of machine learning that has recently been making breakthroughs in the analysis of complex datasets that previously were not of much use. Initially the goal was to apply deep learning to the skills-to-company relationship, but a lack of quality data required a change to the skills-to-industry relationship. To accomplish the new goal, a database of LinkedIn profiles that are part of various industries was gathered and processed. From this dataset a model was created to take a list of skills and output an industry that people with those skills work in. Such a model has value in the insights that it forms allowing candidates to: determine what industry fits a skillset, identify key skills for industries, and locate which industries possible candidates may best fit in. Various models were trained and tested on a skill to industry dataset. The model was able to learn similarities between industries, and predict the most likely industries for each profiles skillset.

Contributors

Agent

Created

Date Created
  • 2017-12

131212-Thumbnail Image.png

Facial Expression Recognition Using Machine Learning

Description

In recent years, the development of new Machine Learning models has allowed for new technological advancements to be introduced for practical use across the world. Multiple studies and experiments have

In recent years, the development of new Machine Learning models has allowed for new technological advancements to be introduced for practical use across the world. Multiple studies and experiments have been conducted to create new variations of Machine Learning models with different algorithms to determine if potential systems would prove to be successful. Even today, there are still many research initiatives that are continuing to develop new models in the hopes to discover potential solutions for problems such as autonomous driving or determining the emotional value from a single sentence. One of the current popular research topics for Machine Learning is the development of Facial Expression Recognition systems. These Machine Learning models focus on classifying images of human faces that are expressing different emotions through facial expressions. In order to develop effective models to perform Facial Expression Recognition, researchers have gone on to utilize Deep Learning models, which are a more advanced implementation of Machine Learning models, known as Neural Networks. More specifically, the use of Convolutional Neural Networks has proven to be the most effective models for achieving highly accurate results at classifying images of various facial expressions. Convolutional Neural Networks are Deep Learning models that are capable of processing visual data, such as images and videos, and can be used to identify various facial expressions. The purpose of this project, I focused on learning about the important concepts of Machine Learning, Deep Learning, and Convolutional Neural Networks to implement a Convolutional Neural Network that was previously developed by a recommended research paper.

Contributors

Created

Date Created
  • 2020-05

131482-Thumbnail Image.png

Improving Peptide Identification in Shotgun Proteomics Using Deep Neural Networks

Description

In shotgun proteomics, liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS) is used to identify and quantify peptides and proteins. LC-MS/MS produces mass spectra, which must be searched by one

In shotgun proteomics, liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS) is used to identify and quantify peptides and proteins. LC-MS/MS produces mass spectra, which must be searched by one or more engines, which employ
algorithms to match spectra to theoretical spectra derived from a reference database.
These engines identify and characterize proteins and their component peptides. By
training a convolutional neural network on a dataset of over 6 million MS/MS spectra
derived from human proteins, we aim to create a tool that can quickly and effectively
identify spectra as peptides prior to database searching. This can significantly reduce search space and thus run time for database searches, thereby accelerating LCMS/MS-based proteomics data acquisition. Additionally, by training neural networks
on labels derived from the search results of three different database search engines, we
aim to examine and compare which features are best identified by individual search
engines, a neural network, or a combination of these.

Contributors

Agent

Created

Date Created
  • 2020-05

135758-Thumbnail Image.png

An Image Analysis Environment for Species Identification of Food Contaminating Beetles

Description

Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection

Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection is the identification of foreign particles found in the sample, such as insect body parts. The presence of certain species of insects, especially storage beetles, is a reliable indicator of possible contamination during storage and food processing. However, the current approach to identifying species is visual examination by human analysts; this method is rather subjective and time-consuming. Furthermore, confident identification requires extensive experience and training. To aid this inspection process, we have developed in collaboration with FDA analysts some image analysis-based machine intelligence to achieve species identification with up to 90% accuracy. The current project is a continuation of this development effort. Here we present an image analysis environment that allows practical deployment of the machine intelligence on computers with limited processing power and memory. Using this environment, users can prepare input sets by selecting images for analysis, and inspect these images through the integrated pan, zoom, and color analysis capabilities. After species analysis, the results panel allows the user to compare the analyzed images with referenced images of the proposed species. Further additions to this environment should include a log of previously analyzed images, and eventually extend to interaction with a central cloud repository of images through a web-based interface. Additional issues to address include standardization of image layout, extension of the feature-extraction algorithm, and utilizing image classification to build a central search engine for widespread usage.

Contributors

Agent

Created

Date Created
  • 2016-05

135798-Thumbnail Image.png

Utilizing Neural Networks to Predict Freezing of Gait in Parkinson's Patients

Description

The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as

The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as a mathematical basis for adaptability in personal biomedical devices. The purpose of this study was to determine the viability of neural networks in predicting Freezing of Gait (FoG), a symptom of Parkinson's disease in which the patient's legs are suddenly rendered unable to move. More specifically, a class of neural networks known as layered recurrent networks (LRNs) was applied to an open- source FoG experimental dataset donated to the Machine Learning Repository of the University of California at Irvine. The independent variables in this experiment \u2014 the subject being tested, neural network architecture, and sampling of the majority classes \u2014 were each varied and compared against the performance of the neural network in predicting future FoG events. It was determined that single-layered recurrent networks are a viable method of predicting FoG events given the volume of the training data available, though results varied significantly between different patients. For the three patients tested, shank acceleration data was used to train networks with peak precision/recall values of 41.88%/47.12%, 89.05%/29.60%, and 57.19%/27.39% respectively. These values were obtained for networks optimized using detection theory rather than optimized for desired values of precision and recall. Furthermore, due to the nature of the experiments performed in this study, these values are representative of the lower-bound performance of layered recurrent networks trained to detect gait freezing. As such, these values may be improved through a variety of measures.

Contributors

Agent

Created

Date Created
  • 2016-05

132995-Thumbnail Image.png

Automatic Song Lyric Generation and Classification with Long Short-Term Networks

Description

Lyric classification and generation are trending in topics in the machine learning community. Long Short-Term Networks (LSTMs) are effective tools for classifying and generating text. We explored their effectiveness in

Lyric classification and generation are trending in topics in the machine learning community. Long Short-Term Networks (LSTMs) are effective tools for classifying and generating text. We explored their effectiveness in the generation and classification of lyrical data and proposed methods of evaluating their accuracy. We found that LSTM networks with dropout layers were effective at lyric classification. We also found that Word embedding LSTM networks were extremely effective at lyric generation.

Contributors

Agent

Created

Date Created
  • 2019-05

132164-Thumbnail Image.png

Design and Analysis of Algorithmic Trading Automation

Description

With the coming advances of computational power, algorithmic trading has become one of the primary strategies to trading on the stock market. To understand why and how these strategies have

With the coming advances of computational power, algorithmic trading has become one of the primary strategies to trading on the stock market. To understand why and how these strategies have been effective, this project has taken a look at the complete process of creating tools and applications to analyze and predict stock prices in order to perform low-frequency trading. The project is composed of three main components. The first component is integrating several public resources to acquire and process financial trading data and store it in order to complete the other components. Alpha Vantage API, a free open source application, provides an accurate and comprehensive dataset of features for each stock ticker requested. The second component is researching, prototyping, and implementing various trading algorithms in code. We began by focusing on the Mean Reversion algorithm as a proof of concept algorithm to develop meaningful trading strategies and identify patterns within our datasets. To augment our market prediction power (“alpha”), we implemented a Long Short-Term Memory recurrent neural network. Neural Networks are an incredibly effective but often complex tool used frequently in data science when traditional methods are found lacking. Following the implementation, the last component is to optimize, analyze, compare, and contrast all of the algorithms and identify key features to conclude the overall effectiveness of each algorithm. We were able to identify conclusively which aspects of each algorithm provided better alpha and create an entire pipeline to automate this process for live trading implementation. An additional reason for automation is to provide an educational framework such that any who may be interested in quantitative finance in the future can leverage this project to gain further insight.

Contributors

Agent

Created

Date Created
  • 2019-05

132930-Thumbnail Image.png

Understanding User Privacy Issues: Publishing User Data with Privacy in Mind

Description

The explosive Web growth in the last decade has drastically changed the way billions of people all around the globe conduct numerous activities including creating, sharing, and consuming information. The

The explosive Web growth in the last decade has drastically changed the way billions of people all around the globe conduct numerous activities including creating, sharing, and consuming information. The massive amount of user-generated information encourages companies and service providers to collect users' information and use it in order to better their own goals and then further provide personalized services to users as well. However, the users' information contains their private and sensitive information and can lead to breach of users' privacy. Anonymizing users' information before publishing and using such data is vital in securing their privacy. Due to the many forms of user information (e.g., structural, interactions, etc), different techniques are required for anonymization of users' data. In this thesis, first we discuss different anonymization techniques for various types of user-generated data, i.e., network graphs, web browsing history, and user-item interactions. Our experimental results show the effectiveness of such techniques for data anonymization. Then, we briefly touch on securely and privately sharing information through blockchains.

Contributors

Agent

Created

Date Created
  • 2019-05

132750-Thumbnail Image.png

A Study on Resources Utilization of Deep Learning Workloads

Description

Deep learning and AI have grabbed tremendous attention in the last decade. The substantial accuracy improvement by neural networks in common tasks such as image classification and speech recognition has

Deep learning and AI have grabbed tremendous attention in the last decade. The substantial accuracy improvement by neural networks in common tasks such as image classification and speech recognition has made deep learning as a replacement for many conventional machine learning techniques. Training Deep Neural networks require a lot of data, and therefore vast of amounts of computing resources to process the data and train the model for the neural network. The most obvious solution to solving this problem is to speed up the time it takes to train Deep Neural networks.
AI and deep learning workloads are different from the conventional cloud and mobile workloads, with respect to: (1) Computational Intensity, (2) I/O characteristics, and (3) communication pattern. While there is a considerable amount of research activity on the theoretical aspects of AI and Deep Learning algorithms that run with greater efficiency, there are only a few studies on the infrastructural impact of Deep Learning workloads on computing and storage resources in distributed systems.
It is typical to utilize a heterogeneous mixture of CPU and GPU devices to perform training on a neural network. Google Brain has a developed a reinforcement model that can place training operations across a heterogeneous cluster. Though it has only been tested with local devices in a single cluster. This study will explore the method’s capabilities and attempt to apply this method on a cluster with nodes across a network.

Contributors

Agent

Created

Date Created
  • 2019-05

Deep Periodic Networks

Description

In the field of machine learning, reinforcement learning stands out for its ability to explore approaches to complex, high dimensional problems that outperform even expert humans. For robotic locomotion tasks

In the field of machine learning, reinforcement learning stands out for its ability to explore approaches to complex, high dimensional problems that outperform even expert humans. For robotic locomotion tasks reinforcement learning provides an approach to solving them without the need for unique controllers. In this thesis, two reinforcement learning algorithms, Deep Deterministic Policy Gradient and Group Factor Policy Search are compared based upon their performance in the bipedal walking environment provided by OpenAI gym. These algorithms are evaluated on their performance in the environment and their sample efficiency.

Contributors

Agent

Created

Date Created
  • 2018-12