Matching Items (5)
Filtering by

Clear all filters

136549-Thumbnail Image.png
Description
A primary goal in computer science is to develop autonomous systems. Usually, we provide computers with tasks and rules for completing those tasks, but what if we could extend this type of system to physical technology as well? In the field of programmable matter, researchers are tasked with developing synthetic

A primary goal in computer science is to develop autonomous systems. Usually, we provide computers with tasks and rules for completing those tasks, but what if we could extend this type of system to physical technology as well? In the field of programmable matter, researchers are tasked with developing synthetic materials that can change their physical properties \u2014 such as color, density, and even shape \u2014 based on predefined rules or continuous, autonomous collection of input. In this research, we are most interested in particles that can perform computations, bond with other particles, and move. In this paper, we provide a theoretical particle model that can be used to simulate the performance of such physical particle systems, as well as an algorithm to perform expansion, wherein these particles can be used to enclose spaces or even objects.
ContributorsLaff, Miles (Author) / Richa, Andrea (Thesis director) / Bazzi, Rida (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
134339-Thumbnail Image.png
Description
Implementing a distributed algorithm is more complicated than implementing a non-distributed algorithm. This is because distributed systems involve coordination of different processes each of which has a partial view of the global system state. The only way to share information in a distributed system is by message passing. Task that

Implementing a distributed algorithm is more complicated than implementing a non-distributed algorithm. This is because distributed systems involve coordination of different processes each of which has a partial view of the global system state. The only way to share information in a distributed system is by message passing. Task that are straightforward in a non-distributed system, like deciding on the value of a global system state, can be quite complicated to achieve in a distributed system [1]. On top of the difficulties caused by the distributed nature of the computations, distributed systems typically need to be able to operate normally even if some of the nodes in the system are faulty which further adds to the uncertainty that processes have about the global state. Many factors make the implementation of a distributed algorithms difficult. Design patterns [2] are useful in simplifying the development of general algorithms. A design pattern describes a high level solution to a common, abstract problem that many systems may face. Common structural, creational, and behavioral problems are identified and elegantly solved by design patterns. By identifying features that an algorithm uses, and framing each feature as one of the common problems that a specific design pattern solves, designing a robust implementation of an algorithm becomes more manageable. In this way, design patterns can aid the implementation of algorithms. Unfortunately, design patterns are typically not discussed when developing distributed algorithms. Because correctly developing a distributed algorithm is difficult, many papers (eg. [1], [3], [4]) focus on verifying the correctness of the developed algorithm. Papers that are more practical ([5], [6]) establish the correctness of their algorithm and that their algorithm is efficient enough to be practical. However, papers on distributed algorithms usually make little mention of design patterns. The goal of this work was to gain experience implementing distributed systems including learning the application of design patterns and the application of related technical topics. This was achieved by implementing a currently unpublished algorithm that is tentatively called Bakery Consensus. Bakery Consensus is a replicated state-machine protocol that can tolerate servers with Byzantine faults, but assumes non-faulty clients. The algorithm also establishes non-skipping timestamps for each operation completed by the replicated state-machine. The design of the structure, communication, and creation of the different system parts depended heavily upon the book Design Patterns [2]. After implementing the system, the success of the in implementing its various parts was based upon their ability to satisfy the SOLID [7] principles as well as their ability to establish low coupling and high cohesion [8]. The rest of this paper is organized as follows. We begin by providing background information about distributed algorithms, including replicated state-machine protocols and the Bakery Consensus algorithm. Section 3 gives a background on several design patterns and software engineering principles that were used in the development process. Section 4 discusses the well designed parts of the system that used design patterns, and how these design patterns were chosen. Section 5 discusses well designed system parts that relied upon other technical topics. Section 6 discusses system parts that need redesign. The conclusion summarizes what was accomplished by the implementation process and the lessons learned about design patterns for distributed algorithms.
ContributorsStoutenburg, Tristan Kaleb (Author) / Bazzi, Rida (Thesis director) / Richa, Andrea (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133206-Thumbnail Image.png
Description
Ethereum smart contracts are susceptible not only to those vulnerabilities common to all software development domains, but also to those arising from the peculiar execution model of the Ethereum Virtual Machine. One of these vulnerabilities, a susceptibility to re-entrancy attacks, has been at the center of several high-profile contract exploits.

Ethereum smart contracts are susceptible not only to those vulnerabilities common to all software development domains, but also to those arising from the peculiar execution model of the Ethereum Virtual Machine. One of these vulnerabilities, a susceptibility to re-entrancy attacks, has been at the center of several high-profile contract exploits. Currently, there exist many tools to detect these vulnerabilties, as well as languages which preempt the creation of contracts exhibiting these issues, but no mechanism to address them in an automated fashion. One possible approach to filling this gap is direct patching of source files. The process of applying these patches to contracts written in Solidity, the primary Ethereum contract language, is discussed. Toward this end, a survey of deployed contracts is conducted, focusing on prevalence of language features and compiler versions. A heuristic approach to mitigating a particular class of re-entrancy vulnerability is developed, implemented as the SolPatch tool, and examined with respect to its limitations. As a proof of concept and illustrative example, a simplified version of the contract featured in a high-profile exploit is patched in this manner.
ContributorsLehman, Maxfield Chance Christian (Author) / Bazzi, Rida (Thesis director) / Doupe, Adam (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
131337-Thumbnail Image.png
Description
Apple’s HomeKit framework centralizes control of smart home devices and allows users to create home automations based on predefined rules. For example, a user can add a rule to turn off all the lights in their house whenever they leave. Currently, these rules must be added through a graphical user

Apple’s HomeKit framework centralizes control of smart home devices and allows users to create home automations based on predefined rules. For example, a user can add a rule to turn off all the lights in their house whenever they leave. Currently, these rules must be added through a graphical user interface provided by Apple or a third-party app on iOS. This thesis describes how a text-based language provides users with a more expressive means of creating complex home automations and successfully implements such a language. Rules created using this text-based format are parsed and interpreted into rules that can be added directly into HomeKit. This thesis also explores how security features should be implemented with this text-based approach. Since automations are run by the system without user interaction, it is important to consider how the system itself can provide functionality to address the unintended consequences that may result from running an automation. This is especially important for the text-based approach since its increase in expressiveness makes it easier for a user to make a mistake in programming that leads to a security concern. The proposed method for preventing unintended side effects is using a simulation to run every automation prior to actually running the automation on real-world devices. This approach allows users to code some conditions that must be satisfied in order for the automation to run on devices in the home. This thesis describes the creation of such a program that successfully simulates every device in the home. There were limitations, however, with Apple's HomeKit framework, which made it impractical to match the state of simulated devices to real devices in the home. Without being able to match the current state of the home to the current state of the simulation, this method cannot satisfy the goal of ensuring that certain adverse effects will not occur as a result of automations. Other smart home control platforms that provide more extensibility could be used to create this simulation-based security approach. Perhaps as Apple continues to open up their HomeKit platform to developers, this approach may be feasible within Apple's ecosystem at some point in the future.
ContributorsSharp, Trevor Ryan (Co-author) / Sharp, Trevor (Co-author) / Bazzi, Rida (Thesis director) / Doupe, Adam (Committee member) / Economics Program in CLAS (Contributor) / Department of Management and Entrepreneurship (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132570-Thumbnail Image.png
DescriptionThe goal of this study is to equip administrators and instructors with a deeper understanding of the apparent cheating problem in Computer Science courses, with proposed solutions to lower academic dishonesty from the students’ perspective.
ContributorsAl Yasari, Farah (Co-author) / Alyasari, Farah (Co-author) / Tadayon-Navabi, Farideh (Thesis director) / Bazzi, Rida (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05