Matching Items (13)
Filtering by

Clear all filters

136255-Thumbnail Image.png
Description
Over the course of six months, we have worked in partnership with Arizona State University and a leading producer of semiconductor chips in the United States market (referred to as the "Company"), lending our skills in finance, statistics, model building, and external insight. We attempt to design models that hel

Over the course of six months, we have worked in partnership with Arizona State University and a leading producer of semiconductor chips in the United States market (referred to as the "Company"), lending our skills in finance, statistics, model building, and external insight. We attempt to design models that help predict how much time it takes to implement a cost-saving project. These projects had previously been considered only on the merit of cost savings, but with an added dimension of time, we hope to forecast time according to a number of variables. With such a forecast, we can then apply it to an expense project prioritization model which relates time and cost savings together, compares many different projects simultaneously, and returns a series of present value calculations over different ranges of time. The goal is twofold: assist with an accurate prediction of a project's time to implementation, and provide a basis to compare different projects based on their present values, ultimately helping to reduce the Company's manufacturing costs and improve gross margins. We believe this approach, and the research found toward this goal, is most valuable for the Company. Two coaches from the Company have provided assistance and clarified our questions when necessary throughout our research. In this paper, we begin by defining the problem, setting an objective, and establishing a checklist to monitor our progress. Next, our attention shifts to the data: making observations, trimming the dataset, framing and scoping the variables to be used for the analysis portion of the paper. Before creating a hypothesis, we perform a preliminary statistical analysis of certain individual variables to enrich our variable selection process. After the hypothesis, we run multiple linear regressions with project duration as the dependent variable. After regression analysis and a test for robustness, we shift our focus to an intuitive model based on rules of thumb. We relate these models to an expense project prioritization tool developed using Microsoft Excel software. Our deliverables to the Company come in the form of (1) a rules of thumb intuitive model and (2) an expense project prioritization tool.
ContributorsAl-Assi, Hashim (Co-author) / Chiang, Robert (Co-author) / Liu, Andrew (Co-author) / Ludwick, David (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor) / School of Accountancy (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / WPC Graduate Programs (Contributor)
Created2015-05
132832-Thumbnail Image.png
Description
Exchange traded funds (ETFs) in many ways are similar to more traditional closed-end mutual funds, although thee differ in a crucial way. ETFs rely on a creation and redemption feature to achieve their functionality and this mechanism is designed to minimize the deviations that occur between the ETF’s listed price

Exchange traded funds (ETFs) in many ways are similar to more traditional closed-end mutual funds, although thee differ in a crucial way. ETFs rely on a creation and redemption feature to achieve their functionality and this mechanism is designed to minimize the deviations that occur between the ETF’s listed price and the net asset value of the ETF’s underlying assets. However while this does cause ETF deviations to be generally lower than their mutual fund counterparts, as our paper explores this process does not eliminate these deviations completely. This article builds off an earlier paper by Engle and Sarkar (2006) that investigates these properties of premiums (discounts) of ETFs from their fair market value. And looks to see if these premia have changed in the last 10 years. Our paper then diverges from the original and takes a deeper look into the standard deviations of these premia specifically.

Our findings show that over 70% of an ETFs standard deviation of premia can be explained through a linear combination consisting of two variables: a categorical (Domestic[US], Developed, Emerging) and a discrete variable (time-difference from US). This paper also finds that more traditional metrics such as market cap, ETF price volatility, and even 3rd party market indicators such as the economic freedom index and investment freedom index are insignificant predictors of an ETFs standard deviation of premia when combined with the categorical variable. These findings differ somewhat from existing literature which indicate that these factors should have a significant impact on the predictive ability of an ETFs standard deviation of premia.
ContributorsZhang, Jingbo (Co-author, Co-author) / Henning, Thomas (Co-author) / Simonson, Mark (Thesis director) / Licon, L. Wendell (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The object of the present study is to examine methods in which the company can optimize their costs on third-party suppliers whom oversee other third-party trade labor. The third parties in scope of this study are suspected to overstaff their workforce, thus overcharging the company. We will introduce a complex

The object of the present study is to examine methods in which the company can optimize their costs on third-party suppliers whom oversee other third-party trade labor. The third parties in scope of this study are suspected to overstaff their workforce, thus overcharging the company. We will introduce a complex spreadsheet model that will propose a proper project staffing level based on key qualitative variables and statistics. Using the model outputs, the Thesis team proposes a headcount solution for the company and problem areas to focus on, going forward. All sources of information come from company proprietary and confidential documents.
ContributorsLoo, Andrew (Co-author) / Brennan, Michael (Co-author) / Sheiner, Alexander (Co-author) / Hertzel, Michael (Thesis director) / Simonson, Mark (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / WPC Graduate Programs (Contributor) / School of Accountancy (Contributor)
Created2014-05
148185-Thumbnail Image.png
Description

This thesis examines the value creation potential of renovating an existing commercial real estate asset to a medical office. It begins by examining commercial real estate and the medical sector at a high level. It then discusses the various criteria used to select a subject property for renovation. This renovation

This thesis examines the value creation potential of renovating an existing commercial real estate asset to a medical office. It begins by examining commercial real estate and the medical sector at a high level. It then discusses the various criteria used to select a subject property for renovation. This renovation is then depicted through a modified pitch book that contains a financial model and pro forma.

ContributorsLarrea, Justin (Co-author) / Berger, Nicholas (Co-author) / Peters, Matthew (Co-author) / Simonson, Mark (Thesis director) / Gray, William (Committee member) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148191-Thumbnail Image.png
Description

This thesis examines the value creation potential of renovating an existing commercial real estate asset to a medical office. It begins by examining commercial real estate and the medical sector at a high level. It then discusses the various criteria used to select a subject property for renovation. This renovation

This thesis examines the value creation potential of renovating an existing commercial real estate asset to a medical office. It begins by examining commercial real estate and the medical sector at a high level. It then discusses the various criteria used to select a subject property for renovation. This renovation is then depicted through a modified pitch book that contains a financial model and pro forma.

ContributorsBerger, Nicholas James (Co-author) / Larrea, Justin (Co-author) / Peters, Matthew (Co-author) / Simonson, Mark (Thesis director) / Gray, William (Committee member) / School of Accountancy (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147866-Thumbnail Image.png
Description

This thesis examines the value creation potential of renovating an existing commercial real estate asset to a medical office. It begins by examining commercial real estate and the medical sector at a high level. It then discusses the various criteria used to select a subject property for renovation. This renovation

This thesis examines the value creation potential of renovating an existing commercial real estate asset to a medical office. It begins by examining commercial real estate and the medical sector at a high level. It then discusses the various criteria used to select a subject property for renovation. This renovation is then depicted through a modified pitch book that contains a financial model and pro forma.

ContributorsPeters, Matthew Scott (Co-author) / Larrea, Justin (Co-author) / Berger, Nicholas (Co-author) / Simonson, Mark (Thesis director) / Gray, William (Committee member) / Department of Finance (Contributor, Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
189356-Thumbnail Image.png
Description
This dissertation comprises two projects: (i) Multiple testing of local maxima for detection of peaks and change points with non-stationary noise, and (ii) Height distributions of critical points of smooth isotropic Gaussian fields: computations, simulations and asymptotics. The first project introduces a topological multiple testing method for one-dimensional domains to

This dissertation comprises two projects: (i) Multiple testing of local maxima for detection of peaks and change points with non-stationary noise, and (ii) Height distributions of critical points of smooth isotropic Gaussian fields: computations, simulations and asymptotics. The first project introduces a topological multiple testing method for one-dimensional domains to detect signals in the presence of non-stationary Gaussian noise. The approach involves conducting tests at local maxima based on two observation conditions: (i) the noise is smooth with unit variance and (ii) the noise is not smooth where kernel smoothing is applied to increase the signal-to-noise ratio (SNR). The smoothed signals are then standardized, which ensures that the variance of the new sequence's noise becomes one, making it possible to calculate $p$-values for all local maxima using random field theory. Assuming unimodal true signals with finite support and non-stationary Gaussian noise that can be repeatedly observed. The algorithm introduced in this work, demonstrates asymptotic strong control of the False Discovery Rate (FDR) and power consistency as the number of sequence repetitions and signal strength increase. Simulations indicate that FDR levels can also be controlled under non-asymptotic conditions with finite repetitions. The application of this algorithm to change point detection also guarantees FDR control and power consistency. The second project focuses on investigating the explicit and asymptotic height densities of critical points of smooth isotropic Gaussian random fields on both Euclidean space and spheres.The formulae are based on characterizing the distribution of the Hessian of the Gaussian field using the Gaussian orthogonally invariant (GOI) matrices and the Gaussian orthogonal ensemble (GOE) matrices, which are special cases of GOI matrices. However, as the dimension increases, calculating explicit formulae becomes computationally challenging. The project includes two simulation methods for these distributions. Additionally, asymptotic distributions are obtained by utilizing the asymptotic distribution of the eigenvalues (excluding the maximum eigenvalues) of the GOE matrix for large dimensions. However, when it comes to the maximum eigenvalue, the Tracy-Widom distribution is utilized. Simulation results demonstrate the close approximation between the asymptotic distribution and the real distribution when $N$ is sufficiently large.
Contributorsgu, shuang (Author) / Cheng, Dan (Thesis advisor) / Lopes, Hedibert (Committee member) / Fricks, John (Committee member) / Lan, Shiwei (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2023
171927-Thumbnail Image.png
Description
Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country measles case reports, even such countries with robust registration systems.

Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country measles case reports, even such countries with robust registration systems. Eilertson et al. (2019) propose using a state-space model combined with maximum likelihood methods for estimating measles transmission. A Bayesian approach that uses particle Markov Chain Monte Carlo (pMCMC) is proposed to estimate the parameters of the non-linear state-space model developed in Eilertson et al. (2019) and similar previous studies. This dissertation illustrates the performance of this approach by calculating posterior estimates of the model parameters and predictions of the unobserved states in simulations and case studies. Also, Iteration Filtering (IF2) is used as a support method to verify the Bayesian estimation and to inform the selection of prior distributions. In the second half of the thesis, a birth-death process is proposed to model the unobserved population size of a disease vector. This model studies the effect of a disease vector population size on a second affected population. The second population follows a non-homogenous Poisson process when conditioned on the vector process with a transition rate given by a scaled version of the vector population. The observation model also measures a potential threshold event when the host species population size surpasses a certain level yielding a higher transmission rate. A maximum likelihood procedure is developed for this model, which combines particle filtering with the Minorize-Maximization (MM) algorithm and extends the work of Crawford et al. (2014).
ContributorsMartinez Rivera, Wilmer Osvaldo (Author) / Fricks, John (Thesis advisor) / Reiser, Mark (Committee member) / Zhou, Shuang (Committee member) / Cheng, Dan (Committee member) / Lan, Shiwei (Committee member) / Arizona State University (Publisher)
Created2022
157893-Thumbnail Image.png
Description
One of the premier technologies for studying human brain functions is the event-related functional magnetic resonance imaging (fMRI). The main design issue for such experiments is to find the optimal sequence for mental stimuli. This optimal design sequence allows for collecting informative data to make precise statistical inferences about the

One of the premier technologies for studying human brain functions is the event-related functional magnetic resonance imaging (fMRI). The main design issue for such experiments is to find the optimal sequence for mental stimuli. This optimal design sequence allows for collecting informative data to make precise statistical inferences about the inner workings of the brain. Unfortunately, this is not an easy task, especially when the error correlation of the response is unknown at the design stage. In the literature, the maximin approach was proposed to tackle this problem. However, this is an expensive and time-consuming method, especially when the correlated noise follows high-order autoregressive models. The main focus of this dissertation is to develop an efficient approach to reduce the amount of the computational resources needed to obtain A-optimal designs for event-related fMRI experiments. One proposed idea is to combine the Kriging approximation method, which is widely used in spatial statistics and computer experiments with a knowledge-based genetic algorithm. Through case studies, a demonstration is made to show that the new search method achieves similar design efficiencies as those attained by the traditional method, but the new method gives a significant reduction in computing time. Another useful strategy is also proposed to find such designs by considering only the boundary points of the parameter space of the correlation parameters. The usefulness of this strategy is also demonstrated via case studies. The first part of this dissertation focuses on finding optimal event-related designs for fMRI with simple trials when each stimulus consists of only one component (e.g., a picture). The study is then extended to the case of compound trials when stimuli of multiple components (e.g., a cue followed by a picture) are considered.
ContributorsAlrumayh, Amani (Author) / Kao, Ming-Hung (Thesis advisor) / Stufken, John (Committee member) / Reiser, Mark R. (Committee member) / Pan, Rong (Committee member) / Cheng, Dan (Committee member) / Arizona State University (Publisher)
Created2019
158061-Thumbnail Image.png
Description
Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type of experiments is still scarce. The joint mixed responses model

Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type of experiments is still scarce. The joint mixed responses model that is considered here involves a mixture of ordinary linear models for the continuous response and a generalized linear model for the binary response. Using the complete class approach, tighter upper bounds on the number of support points required for finding locally optimal designs are derived for the mixed responses models studied in this work.

In the first part of this dissertation, a theoretical result was developed to facilitate the search of locally symmetric optimal designs for mixed responses models with one continuous covariate. Then, the study was extended to mixed responses models that include group effects. Two types of mixed responses models with group effects were investigated. The first type includes models having no common parameters across subject group, and the second type of models allows some common parameters (e.g., a common slope) across groups. In addition to complete class results, an efficient algorithm (PSO-FM) was proposed to search for the A- and D-optimal designs. Finally, the first-order mixed responses model is extended to a type of a quadratic mixed responses model with a quadratic polynomial predictor placed in its linear model.
ContributorsKhogeer, Hazar Abdulrahman (Author) / Kao, Ming-Hung (Thesis advisor) / Stufken, John (Committee member) / Reiser, Mark R. (Committee member) / Zheng, Yi (Committee member) / Cheng, Dan (Committee member) / Arizona State University (Publisher)
Created2020