Matching Items (11)
Filtering by

Clear all filters

152709-Thumbnail Image.png
Description
The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria have, however, become attractive microbial factories to produce renewable fuels and chemicals directly from sunlight and CO2. To explore the

The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria have, however, become attractive microbial factories to produce renewable fuels and chemicals directly from sunlight and CO2. To explore the feasibility of photosynthetic production of (S)- and (R)-3-hydroxybutyrate (3HB), building-block monomers for synthesizing the biodegradable plastics polyhydroxyalkanoates and precursors to fine chemicals, synthetic metabolic pathways have been constructed, characterized and optimized in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803). Both types of 3HB molecules were produced and readily secreted from Synechocystis cells without over-expression of transporters. Additional inactivation of the competing PHB biosynthesis pathway further promoted the 3HB production. Analysis of the intracellular acetyl-CoA and anion concentrations in the culture media indicated that the phosphate consumption during the photoautotrophic growth and the concomitant elevated acetyl-CoA pool acted as a key driving force for 3HB biosynthesis in Synechocystis. Fine-tuning of the gene expression levels via strategies, including tuning gene copy numbers, promoter engineering and ribosome binding site optimization, proved critical to mitigating metabolic bottlenecks and thus improving the 3HB production. One of the engineered Synechocystis strains, namely R168, was able to produce (R)-3HB to a cumulative titer of ~1600 mg/L, with a peak daily productivity of ~200 mg/L, using light and CO2 as the sole energy and carbon sources, respectively. Additionally, in order to establish a high-efficiency transformation protocol in cyanobacterium Synechocystis 6803, methyltransferase-encoding genes were cloned and expressed to pre-methylate the exogenous DNA before Synechocystis transformation. Eventually, the transformation efficiency was increased by two orders of magnitude in Synechocystis. This research has demonstrated the use of cyanobacteria as cell factories to produce 3HB directly from light and CO2, and developed new synthetic biology tools for cyanobacteria.
ContributorsWang, Bo (Author) / Meldrum, Deirdre R (Thesis advisor) / Zhang, Weiwen (Committee member) / Sandrin, Todd R. (Committee member) / Nielsen, David R (Committee member) / Arizona State University (Publisher)
Created2014
153163-Thumbnail Image.png
Description
With the aid of metabolic pathways engineering, microbes are finding increased use as biocatalysts to convert renewable biomass resources into fine chemicals, pharmaceuticals and other valuable compounds. These alternative, bio-based production routes offer distinct advantages over traditional synthesis methods, including lower energy requirements, rendering them as more "green" and

With the aid of metabolic pathways engineering, microbes are finding increased use as biocatalysts to convert renewable biomass resources into fine chemicals, pharmaceuticals and other valuable compounds. These alternative, bio-based production routes offer distinct advantages over traditional synthesis methods, including lower energy requirements, rendering them as more "green" and "eco-friendly". Escherichia coli has recently been engineered to produce the aromatic chemicals (S)-styrene oxide and phenol directly from renewable glucose. Several factors, however, limit the viability of this approach, including low titers caused by product inhibition and/or low metabolic flux through the engineered pathways. This thesis focuses on addressing these concerns using magnetic mesoporous carbon powders as adsorbents for continuous, in-situ product removal as a means to alleviate such limitations. Using process engineering as a means to troubleshoot metabolic pathways by continuously removing products, increased yields are achieved from both pathways. By performing case studies in product toxicity and reaction equilibrium it was concluded that each step of a metabolic pathway can be optimized by the strategic use of in-situ adsorption as a process engineering tool.
ContributorsVasudevan, Anirudh (Author) / Nielsen, David R (Thesis advisor) / Torres, César I (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2014
156858-Thumbnail Image.png
Description
Synechocystis sp. PCC 6803 is a readily transformable cyanobacteria used to study cyanobacterial genetics, as well as production of biofuels, polyesters, and other industrial chemicals. Free fatty acids are precursors to biofuels which are used by Synechocystis cells as a means of energy storage. By genetically modifying the cyanobacteria to

Synechocystis sp. PCC 6803 is a readily transformable cyanobacteria used to study cyanobacterial genetics, as well as production of biofuels, polyesters, and other industrial chemicals. Free fatty acids are precursors to biofuels which are used by Synechocystis cells as a means of energy storage. By genetically modifying the cyanobacteria to expel these chemicals, costs associated with retrieving the products will be reduced; concurrently, the bacteria will be able to produce the products at a higher concentration. This is achieved by adding genes encoding components of the Escherichia coli AcrAB-TolC efflux system, part of the resistance-nodulation-division (RND) transporter family, to Synechocystis sp. PCC 6803. AcrAB-TolC is a relatively promiscuous multidrug efflux pump that is noted for expelling a wide range of substrates including dyes, organic solvents, antibiotics, and free fatty acids. Adding components of the AcrAB-TolC multidrug efflux pump to a previously created high free fatty acid producing strain, SD277, allowed cells to move more free fatty acids to the extracellular environment than did the parent strain. Some of these modifications also improved tolerance to antibiotics and a dye, rhodamine 6G. To confirm the function of this exogenous efflux pump, the genes encoding components of the AcrAB-TolC efflux pump were also added to Synechocystis sp. PCC 6803 and shown to grow on a greater concentration of various antibiotics and rhodamine 6G. Various endogenous efflux systems have been elucidated, but their usefulness in expelling products currently generated in Synechocystis is limited. Most of the elucidated pumps in the cyanobacteria are part of the ATP-binding cassette superfamily. The knowledge of the resistance-nodulation-division (RND) family transporters is limited. Two genes in Synechocystis sp. PCC 6803, slr2131 and sll0180 encoding homologs to the genes that encode acrB and acrA, respectively, were removed and the modifications resulted in changes in resistance to various antibiotics and a dye and also had an impact on free fatty acid secretion. Both of these deletions were complemented independently with the homologous E. coli gene and the resulting cyanobacteria strains had some of the inherent resistance restored to chloramphenicol and free fatty acid secretion was modified when compared to the wild-type and a high free fatty acid producing strain.
ContributorsBellefleur, Matthew Paul Allen (Author) / Curtiss, III, Roy (Thesis advisor) / Nielsen, David R (Committee member) / Wang, Xuan (Committee member) / Rittmann, Bruce E. (Committee member) / Arizona State University (Publisher)
Created2018
155862-Thumbnail Image.png
Description
The engineering of microbial cell factories capable of synthesizing industrially relevant chemical building blocks is an attractive alternative to conventional petrochemical-based production methods. This work focuses on the novel and enhanced biosynthesis of phenol, catechol, and muconic acid (MA). Although the complete biosynthesis from glucose has been previously demonstrated for

The engineering of microbial cell factories capable of synthesizing industrially relevant chemical building blocks is an attractive alternative to conventional petrochemical-based production methods. This work focuses on the novel and enhanced biosynthesis of phenol, catechol, and muconic acid (MA). Although the complete biosynthesis from glucose has been previously demonstrated for all three compounds, established production routes suffer from notable inherent limitations. Here, multiple pathways to the same three products were engineered, each incorporating unique enzyme chemistries and/or stemming from different endogenous precursors. In the case of phenol, two novel pathways were constructed and comparatively evaluated, with titers reaching as high as 377 ± 14 mg/L at a glucose yield of 35.7 ± 0.8 mg/g. In the case of catechol, three novel pathways were engineered with titers reaching 100 ± 2 mg/L. Finally, in the case of MA, four novel pathways were engineered with maximal titers reaching 819 ± 44 mg/L at a glucose yield of 40.9 ± 2.2 mg/g. Furthermore, the unique flexibility with respect to engineering multiple pathways to the same product arises in part because these compounds are common intermediates in aromatic degradation pathways. Expanding on the novel pathway engineering efforts, a synthetic ‘metabolic funnel’ was subsequently constructed for phenol and MA, wherein multiple pathways were expressed in parallel to maximize carbon flux toward the final product. Using this novel ‘funneling’ strategy, maximal phenol and MA titers exceeding 0.5 and 3 g/L, respectively, were achieved, representing the highest achievable production metrics products reported to date.
ContributorsThompson, Brian (Author) / Nielsen, David R (Thesis advisor) / Nannenga, Brent (Committee member) / Green, Matthew (Committee member) / Wang, Xuan (Committee member) / Moon, Tae Seok (Committee member) / Arizona State University (Publisher)
Created2017
148465-Thumbnail Image.png
Description

This project begins with an overview of the female reproductive tract microenvironment. It outlines the microenvironment of the vaginal, cervical, and endometrial epithelium and the interactions with immune cells and hormone cycles. The review also outlines the models currently used to study the female reproductive tract. The second chapter of

This project begins with an overview of the female reproductive tract microenvironment. It outlines the microenvironment of the vaginal, cervical, and endometrial epithelium and the interactions with immune cells and hormone cycles. The review also outlines the models currently used to study the female reproductive tract. The second chapter of the thesis is a study of the effects of pathogenic and commensal bacteria P. micra, F. magna, and F. nucleatum on cervical epithelial cells. This study analyzes cytotoxic effects after 24 hour infection of these bacteria. This was assessed through crystal violet staining, conventional pcr of cDNA synthesized from extracted cervical RNA, and LDH analysis. There is also an attempted biofilm assay. It was concluded that bacteria P. micra, F. magna and F. nucleatum have cytotoxic potential. This was not expected as F. magna is largely understood to be a commensal bacteria in the vaginal microbiome.

ContributorsGarza, Camryn Nicole (Author) / Plaisier, Christopher (Thesis director) / Herbst-Kralovetz, Melissa (Committee member) / School of Molecular Sciences (Contributor) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168576-Thumbnail Image.png
Description
Amino acids and related targets are typically produced by well-characterized heterotrophs including Corynebacterium glutamicum and Escherichia coli. Recent efforts have sought to supplant these sugar-intensive processes through the metabolic engineering of cyanobacteria, which instead can directly utilize atmospheric carbon dioxide (CO2) and sunlight. One of the most promising among recently

Amino acids and related targets are typically produced by well-characterized heterotrophs including Corynebacterium glutamicum and Escherichia coli. Recent efforts have sought to supplant these sugar-intensive processes through the metabolic engineering of cyanobacteria, which instead can directly utilize atmospheric carbon dioxide (CO2) and sunlight. One of the most promising among recently discovered photoautotrophic strains is Synechococcus elongatus UTEX 2973 (hereafter UTEX 2973), which has been reported to have doubling times as low as 1.5 hours. While encouraging, there are still major challenges preventing the widespread industrial acceptance of engineered cyanobacteria, chief among them is the scarcity of genetic tools and parts with which to engineer production strains. Here, UTEX 2973 was engineered to overproduce L-lysine through the heterologous expression of feedback-resistant copies of aspartokinase lysC and the L-lysine exporter ybjE from Escherichia coli, as aided by the characterization of novel combinations of genetic parts and expression sites. At maximum, using a plasmid-based expression system, a L-lysine titer of 556 ± 62.3 mg/L was attained after 120 hours, surpassing a prior report of photoautotrophic L-lysine bioproduction. Modular extension of the pathway then led to the novel photosynthetic production of the corresponding diamine cadaverine (55.3 ± 6.7 mg/L by 96 hours) and dicarboxylate glutarate (67.5 ± 2.2 mg/L by 96 hours). Lastly, mass transfer experiments were carried out to determine if the solubility of CO2 in and its rate of mass transfer to BG-11 media could be improved by supplementing it with various amines, including cadaverine. Ultimately, however, cyanobacteria grown in the presence of all tested amines was worse than in BG-11 alone, demonstrating the need for additional tolerance engineering to successfully implement this strategy.
ContributorsDookeran, Zachary Anthony (Author) / Nielsen, David R (Thesis advisor) / Wang, Xuan (Committee member) / Nannenga, Brent L (Committee member) / Varman, Arul M (Committee member) / Peebles, Christie AM (Committee member) / Arizona State University (Publisher)
Created2022
168669-Thumbnail Image.png
Description
Alkanolamines are useful as building blocks for a variety of applications, ranging from medical applications such as drug and gene delivery. In this work, Escherichia coli was investigated as a viable candidate for the production of 5-amino-1-pentanol (5-AP). Taking advantage of the existing L-lysine degradation pathway, a novel route to

Alkanolamines are useful as building blocks for a variety of applications, ranging from medical applications such as drug and gene delivery. In this work, Escherichia coli was investigated as a viable candidate for the production of 5-amino-1-pentanol (5-AP). Taking advantage of the existing L-lysine degradation pathway, a novel route to 5-AP was constructed by co-expressing the genes cadA (encoding lysine decarboxylase, responsible for the conversion of L-lysine to cadaverine) and patA (encoding putrescine aminotransferase, responsible for the conversion of cadaverine to 5-amino-1-pentanal), followed by the endogenous reduction of 5-amino-pentanal (5-APL) to 5-AP. To avoid the competing conversion of 5-APL to 5-amino-1-pentanoate and avoid accumulation of byproduct 1-Δ-piperideine, further host engineering was performed to delete the gene patD also known as prr (encoding 5-amino-pentanal dehydrogenase). Flask scale fermentation experiments in minimal medium of the newly constructed pathway was conducted where 62.6 mg/L 5-AP was observed to be produced. It was hypothesized that 5-AP production could be boosted by optimizing production medium to M10 media. However, change in the culture medium resulted in the production of just 51 mg/L 5-AP. Shifts observed in HPLC chromatogram peaks made it difficult to conclude exact titers of 5-AP and can be further improved by exploring different analysis methods and optimization of the method currently in place.
ContributorsBrookhouser, Brendan (Author) / Nielsen, David R (Thesis advisor) / Tonkovich, Anna L (Committee member) / Varman, Arul M (Committee member) / Arizona State University (Publisher)
Created2022
187561-Thumbnail Image.png
Description
Lignocellulose, the major structural component of plant biomass, represents arenewable substrate of enormous biotechnological value. Microbial production of chemicals from lignocellulosic biomass is an attractive alternative to chemical synthesis. However, to create industrially competitive strains to efficiently convert lignocellulose to high-value chemicals, current challenges must be addressed. Redox constraints, allosteric regulation, and transport-related limitations

Lignocellulose, the major structural component of plant biomass, represents arenewable substrate of enormous biotechnological value. Microbial production of chemicals from lignocellulosic biomass is an attractive alternative to chemical synthesis. However, to create industrially competitive strains to efficiently convert lignocellulose to high-value chemicals, current challenges must be addressed. Redox constraints, allosteric regulation, and transport-related limitations are important bottlenecks limiting the commercial production of renewable chemicals from lignocellulose. Advances in metabolic engineering techniques have enabled researchers to engineer microbial strains that overcome some of these challenges but new approaches that facilitate the commercial viability of lignocellulose valorization are needed. Biological systems are complex with a plethora of regulatory systems that must be carefully modulated to efficiently produce and excrete the desired metabolites. In this work, I explore metabolic engineering strategies to address some of the biological constraints limiting bioproduction such as redox, allosteric, and transport constraints to facilitate cost-effective lignocellulose bioconversion.
ContributorsOnyeabor, Moses Ekenedilichukwu (Author) / Wang, Xuan (Thesis advisor) / Varman, Arul M (Committee member) / Nannenga, Brent (Committee member) / Nielsen, David R (Committee member) / Geiler-Samerotte, Kerry (Committee member) / Arizona State University (Publisher)
Created2023
171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
ContributorsChen, Xingwen (Author) / Wang, Xiao (Thesis advisor) / Kuang, Yang (Committee member) / Tian, Xiaojun (Committee member) / Brafman, David (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
161493-Thumbnail Image.png
Description
Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown

Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown to be highly differentially expressed in E. coli upon styrene exposure were further investigated by testing the effects of their deletion and overexpression on styrene tolerance and growth. It was found that plsX, a gene responsible for the phospholipid formation in membranes, had the most promising results when overexpressed at 10 µM IPTG, with a relative OD600 of 706 ± 117% at 175 mg/L styrene when compared to the control plasmid at the same concentration. This gene is likely to be effective target when engineering styrene- and other aromatic-producing strains, increasing titers by reducing their cytotoxicity.In the second study, the goal is to engineer the cyanobacterium Synechococcus sp. PCC 7002 for the overproduction of L-serine. As a robust, photosynthetic bacteria, it has potential for being used in such-rich states to capture CO2 and produce industrially relevant products. In order to increase L-serine titers, a key degradation gene, ilvA, must be removed. While ilvA is responsible for degrading L-serine into pyruvate, it is also responsible for initiating the only known pathway for the production of isoleucine. Herein, we constructed a plasmid containing the native A0730 gene in order to investigate its potential to restore isoleucine production. If functional, a Synechococcus sp. PCC 7002 ΔilvA strain can then be engineered with minimal effects on growth and an expected increase in L-serine accumulation.
ContributorsAbed, Omar (Author) / Nielsen, David R (Thesis advisor) / Varman, Arul M (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2021