Matching Items (3)
Filtering by

Clear all filters

134312-Thumbnail Image.png
Description
The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission.

The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission. The only power source during the mission will be its solar panels. It is difficult to calculate power generation from solar panels by hand because of the different orientations the satellite will be positioned in during orbit; therefore, simulation will be used to produce power generation data. Knowing how much power is generated is integral to balancing the power budget, confirming whether there is enough power for all the components, and knowing whether there will be enough power in the batteries during eclipse. This data will be used to create an optimal design for the Phoenix CubeSat to accomplish its mission.
ContributorsBarakat, Raymond John (Author) / White, Daniel (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134398-Thumbnail Image.png
Description
The emergence of the space industry facilitated new technologies which completely changed how humans live. However, the industry itself has also acted as a constant source of conflict between its participants. As a result, the industry has encountered issues regarding the role of private industry in space development, the militarization

The emergence of the space industry facilitated new technologies which completely changed how humans live. However, the industry itself has also acted as a constant source of conflict between its participants. As a result, the industry has encountered issues regarding the role of private industry in space development, the militarization of space, how to address the gap in space technology between developed and underdeveloped nations, and the overall economic climate of space. With these numerous challenges facing the space industry, this investigation hopes to present potential solutions to said issues while providing a baseline for future research. In order to accomplish this, the international relations ideologies of neorealism, neoliberalism and constructivism were applied in conjunction with opinions from multiple industry scholars to synthesize potential solutions and provide a knowledge baseline and methodology for future investigations. This resulted in the conclusion that, in the scope of this investigation, a constructivist solution focusing on human nature's role in international relations is the best means of avoiding global conflict while promoting prosperity. The proposed constructivist solution proposes the development of multi-actor groups which defend, maintain and develop space assets collectively. These groups formed around ideological similarities would effectively limit conflict and increase the viability of space. However, this constructivist approach is not satisfactory due to its complexity which could result in the breakdown of peace and prosperity if interdependence between actors cannot be maintained. As a result, more research is necessary to develop an appropriate solution but, the methodology, information and understanding of different international relations principles used in this thesis can be used in future investigations to develop more comprehensive solutions.
ContributorsDeininger, Nicholas Robert (Author) / Foy, Joseph P. (Thesis director) / White, Daniel (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133543-Thumbnail Image.png
Description
This paper studies the history and development of ion propulsion systems and survey past, present, and developing technology with their applications to space missions. This analysis addresses the physical design parameters and process that is a part of designing and optimizing a gridded ion thruster. It also identifies operational limits

This paper studies the history and development of ion propulsion systems and survey past, present, and developing technology with their applications to space missions. This analysis addresses the physical design parameters and process that is a part of designing and optimizing a gridded ion thruster. It also identifies operational limits that may be associated with solar-powered ion propulsion systems and posits plausible solutions or alternatives to remedy such limitations. These topics are presented with the intent of reviewing how ion propulsion technology evolved in its journey to develop to today's systems, and to facilitate thought and discussion on where further development of ion propulsion systems can be directed.
ContributorsTang, Justine (Author) / White, Daniel (Thesis director) / Dahm, Werner (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05