Matching Items (5)
Filtering by

Clear all filters

136266-Thumbnail Image.png
Description
A concept found that students struggle with in statics and dynamics is free body diagrams. To capture the difficulties students have with this concept, faculty interviews were conducted to determine common errors seen in a classroom setting. The feedback was used to pull questions from a statics concept inventory focused

A concept found that students struggle with in statics and dynamics is free body diagrams. To capture the difficulties students have with this concept, faculty interviews were conducted to determine common errors seen in a classroom setting. The feedback was used to pull questions from a statics concept inventory focused on free body diagrams. Students who have passed statics and dynamics courses in their engineering degree were asked to participate in talk alouds to confirm the faculty input. The talk alouds provided first hand observations of the student thought process when they perform common errors in creating free body diagrams. The results highlighted that students commonly add forces that are not there or fail to only depict the external forces acting on the system in question. A professor describes the occurrence when students insist on adding forces that are not there as phantom forces. To remedy the idea of phantom forces, an intervention was proposed to be implemented into the classroom.
ContributorsTwet, Samantha Ann (Author) / Brunhaver, Samantha (Thesis director) / Lande, Micah (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
Description

This thesis explores the potential for software to act as an educational experience for engineers who are learning system dynamics and controls. The specific focus is a spring-mass-damper system. First, a brief introduction of the spring-mass-damper system is given, followed by a review of the background and prior work concerning

This thesis explores the potential for software to act as an educational experience for engineers who are learning system dynamics and controls. The specific focus is a spring-mass-damper system. First, a brief introduction of the spring-mass-damper system is given, followed by a review of the background and prior work concerning this topic. Then, the methodology and main approaches of the system are explained, as well as a more technical overview of the program. Lastly, a conclusion and discussion of potential future work is covered. The project was found to be useful by several engineers who tested it. While there is still plenty of functionality to add, it is a promising first attempt at teaching engineers through software development.

ContributorsRobbins, Alexander Kalani (Author) / Kobayashi, Yoshihiro (Thesis director) / Benson, David (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
162295-Thumbnail Image.png
Description

A dynamical approach is used to avoid isolating systems and instead view systems as interacting together. The current study applied a dynamical approach to heart rate variability and personality. There were two main research questions that this study sought to answer with a dynamical analysis of heart rate variability and

A dynamical approach is used to avoid isolating systems and instead view systems as interacting together. The current study applied a dynamical approach to heart rate variability and personality. There were two main research questions that this study sought to answer with a dynamical analysis of heart rate variability and personality: “Can we listen to a heartbeat and draw connections to behavior and personality?” and “Is dynamical analysis more effective than traditional analysis at finding correlations between heart rate variability and personality?” To answer these questions a dynamical analysis of heart rate variability was conducted (detrended fluctuation analysis; DFA) along with traditional analysis (standard deviations of NN intervals, SDNN, and root mean squared of successive deviations, RMSSD) and then correlations between heart rate variability measures and personality traits from the Big Five Inventory, Positive and Negative Affect schedule, and State-Trait Anxiety Inventory were examined. Data for this study came from the Rapid Automatic & Adaptive Model for Performance Prediction (RAAMP2) Dataset that was part of The Multimodal Objective Sensing to Assess Individuals with Context (MOSAIC) project. There were no statistically significant correlations between heart rate variability and personality. However, there were notable correlations between extraversion and SDNN and RMSSD and between positive affect and SDNN and RMSSD. We found that SDNN and RMSSD were more closely correlated to each other compared to DFA to either measure. This suggests that DFA can provide information that SDNN and RMSSD do not. Future research can explore dynamic analysis of heart rate variability and other nested systems.

ContributorsBrown, Brent (Author) / Amazeen, Polemnia (Thesis director) / Corbin, William (Committee member) / Amazeen, Eric (Committee member) / Danvers, Alexander (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2021-12
161075-Thumbnail Image.png
Description

This project examines the dynamics and design of control systems for a rocket in propulsive ascent and descent using a simplified model with motion constrained to a vertical plane. The governing differential equations are analyzed. They are then linearized, after which transfer functions are derived relating controllable input variables to

This project examines the dynamics and design of control systems for a rocket in propulsive ascent and descent using a simplified model with motion constrained to a vertical plane. The governing differential equations are analyzed. They are then linearized, after which transfer functions are derived relating controllable input variables to controlled output variables. The effect of changes in various parameters as well as other aspects of the system are examined. Methods for controller design based on the derived transfer functions are discussed. This will include the discussion of control of the final descent and landing of the rocket. Lastly, there is a brief discussion about both the successes and limitations of the model analyzed.

ContributorsWarner, Adin (Author) / Rodriguez, Armando (Thesis director) / Shafique, Ashfaque (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2021-12
Description
The dynamics of friction as they relate to automobile behavior have been heavily analyzed under conditions that are favorable and predictable in the realm of daily driving. The scope of this project is to investigate behavior of slip in unfavorable conditions and develop a mathematical solution that allows users to

The dynamics of friction as they relate to automobile behavior have been heavily analyzed under conditions that are favorable and predictable in the realm of daily driving. The scope of this project is to investigate behavior of slip in unfavorable conditions and develop a mathematical solution that allows users to predict behavior of oversteer and excessive sideslip. I am fascinated by the topic as I have developed a background in the sport of drifting (controlled oversteer) and would like to contribute to the understanding of this lesser appreciated science. Highly valued components of the project such as velocities, forces, coefficients of friction, steering angles, slip angles, and multi-wheel analysis will all lead to a deeper understanding of relationships between aspects of a vehicle undergoing oversteer.
ContributorsRoden, Michael Joseph (Author) / Takahashi, Timothy (Thesis director) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12