Matching Items (22)
Filtering by

Clear all filters

157380-Thumbnail Image.png
Description
A direct Magnetic Resonance (MR)-based neural activity mapping technique with high spatial and temporal resolution may accelerate studies of brain functional organization.

The most widely used technique for brain functional imaging is functional Magnetic Resonance Image (fMRI). The spatial resolution of fMRI is high. However, fMRI signals are highly influenced

A direct Magnetic Resonance (MR)-based neural activity mapping technique with high spatial and temporal resolution may accelerate studies of brain functional organization.

The most widely used technique for brain functional imaging is functional Magnetic Resonance Image (fMRI). The spatial resolution of fMRI is high. However, fMRI signals are highly influenced by the vasculature in each voxel and can be affected by capillary orientation and vessel size. Functional MRI analysis may, therefore, produce misleading results when voxels are nearby large vessels. Another problem in fMRI is that hemodynamic responses are slower than the neuronal activity. Therefore, temporal resolution is limited in fMRI. Furthermore, the correlation between neural activity and the hemodynamic response is not fully understood. fMRI can only be considered an indirect method of functional brain imaging.

Another MR-based method of functional brain mapping is neuronal current magnetic resonance imaging (ncMRI), which has been studied over several years. However, the amplitude of these neuronal current signals is an order of magnitude smaller than the physiological noise. Works on ncMRI include simulation, phantom experiments, and studies in tissue including isolated ganglia, optic nerves, and human brains. However, ncMRI development has been hampered due to the extremely small signal amplitude, as well as the presence of confounding signals from hemodynamic changes and other physiological noise.

Magnetic Resonance Electrical Impedance Tomography (MREIT) methods could have the potential for the detection of neuronal activity. In this technique, small external currents are applied to a body during MR scans. This current flow produces a magnetic field as well as an electric field. The altered magnetic flux density along the main magnetic field direction caused by this current flow can be obtained from phase images. When there is neural activity, the conductivity of the neural cell membrane changes and the current paths around the neurons change consequently. Neural spiking activity during external current injection, therefore, causes differential phase accumulation in MR data. Statistical analysis methods can be used to identify neuronal-current-induced magnetic field changes.
ContributorsFu, Fanrui (Author) / Sadleir, Rosalind (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Kleim, Jeffrey (Committee member) / Muthuswamy, Jitendran (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2019
156975-Thumbnail Image.png
Description
There is a critical need for creating an implantable microscale neural interface that can chronically monitor neural activity and oxygenation. These are key aspects for understating the development of impaired neural circuits and their functions. A technology with such capability would foster new insights in the studies of brain diseases

There is a critical need for creating an implantable microscale neural interface that can chronically monitor neural activity and oxygenation. These are key aspects for understating the development of impaired neural circuits and their functions. A technology with such capability would foster new insights in the studies of brain diseases and disorders. The propose is that MR-PISTOL (Proton imaging of Siloxane to Map Tissue Oxygenation Levels) imaging technique can be used for direct measurements of oxygen partial pressure at microelectrode-tissue interface. The strategy consists of coating microelectrodes with soft-silicone, a ultra-soft conductive PDMS (polydimethylsiloxane), as a carrier for liquid siloxanes MR-PISTOL contrast agents. This work presents a proof-of-concept of an injection molding technique for batch fabricate microelectrodes with such coating. Also, reports stability studies of soft-silicone loaded with liquid polydimethylsiloxane (PDMSO) in rodent brains. A batch of thirty coated carbon electrodes was achieved using candy molds. Coating uniformity was evaluated in twelve probes. They were randomly chosen and imaged with a custom image setup that allows 90o rotation of the probes. The total average coating thickness before and after rotation were 0.397 millimeters with standard deviation of 0.070 millimeters and 0.442 millimeters with standard deviation of 0.062 millimeters. Therefore, data confirms that this technique yields uniform coating. Stability of fabricated coated carbon electrodes unloaded (n= 3) and loaded with PDMSO (n= 3) was assessed. 3D X-ray imaging using Zeiss Xradia 520 machine was chosen for studying coatings mechanical stability in ex-vivo rat brain. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) with an energy dispersive x-ray microanalysis (EDS) detector were used to investigate their chemical stability in in vivo mouse brain. Initial EDS analysis from TEM and SEM of acute (6 hours) and chronic (2 weeks) brain slices suggest that PDMSO does not leach into brain. More experiments should be done to confirm and endorse this finding. The mechanical study shows that coating loaded with PDMSO delaminated during insertion. This was not observed with electrodes used in the chemical stability studies. Further experiments need to be done to identify possible causes of mechanical failures.
Contributorsde Mesquita Teixeira, Livia (Author) / Muthuswamy, Jitendran (Thesis advisor, Committee member) / Kodibagkar, Vikram (Thesis advisor, Committee member) / Sridharan, Arati (Committee member) / Arizona State University (Publisher)
Created2018
156937-Thumbnail Image.png
Description
In medical imaging, a wide variety of methods are used to interrogate structural and physiological differences between soft tissues. One of the most ubiquitous methods in clinical practice is Magnetic Resonance Imaging (MRI), which has the advantage of limited invasiveness, soft tissue discrimination, and adequate volumetric resolution. A myriad of

In medical imaging, a wide variety of methods are used to interrogate structural and physiological differences between soft tissues. One of the most ubiquitous methods in clinical practice is Magnetic Resonance Imaging (MRI), which has the advantage of limited invasiveness, soft tissue discrimination, and adequate volumetric resolution. A myriad of advanced MRI methods exists to investigate the microstructural, physiologic and metabolic characteristics of tissue. For example, Dynamic Contrast Enhanced (DCE) and Dynamic Susceptibility Contrast (DSC) MRI non-invasively interrogates the dynamic passage of an exogenously administered MRI contrast agent through tissue to quantify local tracer kinetic properties like blood flow, vascular permeability and tissue compartmental volume fractions. Recently, an improved understanding of the biophysical basis of DSC-MRI signals in brain tumors revealed a new approach to derive multiple quantitative biomarkers that identify intrinsic sub-voxel cellular and vascular microstructure that can be used differentiate tumor sub-types. One of these characteristic biomarkers called Transverse Relaxivity at Tracer Equilibrium (TRATE), utilizes a combination of DCE and DSC techniques to compute a steady-state metric which is particularly sensitive to cell size, density, and packing properties. This work seeks to investigate the sensitivity and potential utility of TRATE in a range of disease states including Glioblastomas, Amyotrophic Lateral Sclerosis (ALS), and Duchenne’s Muscular Dystrophy (DMD). The MRC measures of TRATE showed the most promise in mouse models of ALS where TRATE values decreased with disease progression, a finding that correlated with reductions in myofiber size and area, as quantified by immunohistochemistry. In the animal models of cancer and DMD, TRATE results were more inconclusive, due to marked heterogeneity across animals and treatment state. Overall, TRATE seems to be a promising new biomarker but still needs further methodological refinement due to its sensitivity to contrast to noise and further characterization owing to its non-specificity with respect to multiple cellular features (e.g. size, density, heterogeneity) that complicate interpretation.
ContributorsFuentes, Alberto (Author) / Quarles, Chad C (Thesis advisor) / Kodibagkar, Vikram (Thesis advisor) / Greger, Bradley (Committee member) / Arizona State University (Publisher)
Created2018
154244-Thumbnail Image.png
Description
Among electrical properties of living tissues, the differentiation of tissues or organs provided by electrical conductivity is superior. The pathological condition of living tissues is inferred from the spatial distribution of conductivity. Magnetic Resonance Electrical Impedance Tomography (MREIT) is a relatively new non-invasive conductivity imaging technique. The majority of

Among electrical properties of living tissues, the differentiation of tissues or organs provided by electrical conductivity is superior. The pathological condition of living tissues is inferred from the spatial distribution of conductivity. Magnetic Resonance Electrical Impedance Tomography (MREIT) is a relatively new non-invasive conductivity imaging technique. The majority of conductivity reconstruction algorithms are suitable for isotropic conductivity distributions. However, tissues such as cardiac muscle and white matter in the brain are highly anisotropic. Until recently, the conductivity distributions of anisotropic samples were solved using isotropic conductivity reconstruction algorithms. First and second spatial derivatives of conductivity (∇σ and ∇2σ ) are integrated to obtain the conductivity distribution. Existing algorithms estimate a scalar conductivity instead of a tensor in anisotropic samples.

Accurate determination of the spatial distribution of a conductivity tensor in an anisotropic sample necessitates the development of anisotropic conductivity tensor image reconstruction techniques. Therefore, experimental studies investigating the effect of ∇2σ on degree of anisotropy is necessary. The purpose of the thesis is to compare the influence of ∇2σ on the degree of anisotropy under two different orthogonal current injection pairs.

The anisotropic property of tissues such as white matter is investigated by constructing stable TX-151 gel layer phantoms with varying degrees of anisotropy. MREIT and Diffusion Magnetic Resonance Imaging (DWI) experiments were conducted to probe the conductivity and diffusion properties of phantoms. MREIT involved current injection synchronized to a spin-echo pulse sequence. Similarities and differences in the divergence of the vector field of ∇σ (∇2σ) among anisotropic samples subjected to two different current injection pairs were studied. DWI of anisotropic phantoms involved the application of diffusion-weighted magnetic field gradients with a spin-echo pulse sequence. Eigenvalues and eigenvectors of diffusion tensors were compared to characterize diffusion properties of anisotropic phantoms.

The orientation of current injection electrode pair and degree of anisotropy influence the spatial distribution of ∇2σ. Anisotropy in conductivity is preserved in ∇2σ subjected to non-symmetric electric fields. Non-symmetry in electric field is observed in current injections parallel and perpendicular to the orientation of gel layers. The principal eigenvalue and eigenvector in the phantom with maximum anisotropy display diffusion anisotropy.
ContributorsAshok Kumar, Neeta (Author) / Sadleir, Rosalind J (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2015
153178-Thumbnail Image.png
Description
Magnetic Resonance Imaging (MRI) is an efficient non-invasive imaging tool widely used in medical field to produce high quality images. The MRI signal is detected with specifically developed radio frequency (RF) systems or "coils". There are several key parameters to evaluate the performance of RF coils: signal-to-noise ratio (SNR), homogeneity,

Magnetic Resonance Imaging (MRI) is an efficient non-invasive imaging tool widely used in medical field to produce high quality images. The MRI signal is detected with specifically developed radio frequency (RF) systems or "coils". There are several key parameters to evaluate the performance of RF coils: signal-to-noise ratio (SNR), homogeneity, quality factor (Q factor), sensitivity, etc. The choice of coil size and configuration depends on the object to be imaged. While surface coils have better sensitivity, volume coils are often employed to image a larger region of interest (ROI) as they display better spatial homogeneity. For the cell labeling and imaging studies using the newly developed siloxane based nanoemulsions as 1H MR reporter probes, the first step is to determine the sensitivity of signal detection under controlled conditions in vitro. In this thesis, a novel designed 7 Tesla RF volume coil was designed and tested for detection of small quantities of siloxane probe as well as for imaging of labeled tumor spheroid. The procedure contains PCB circuit design, RF probe design, test and subsequent modification. In this report, both theory and design methodology will be discussed.
ContributorsWang, Haiqing (Author) / Kodibagkar, Vikram (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Sadleir, Rosalind (Committee member) / Arizona State University (Publisher)
Created2014
152955-Thumbnail Image.png
Description
The objective of this small animal pre-clinical research project was to study quantitatively the long-term micro- and macro- structural brain changes employing multiparametric MRI (Magnetic Resonance Imaging) techniques. Two separate projects make up the basis of this thesis. The first part focuses on obtaining prognostic information at early stages in

The objective of this small animal pre-clinical research project was to study quantitatively the long-term micro- and macro- structural brain changes employing multiparametric MRI (Magnetic Resonance Imaging) techniques. Two separate projects make up the basis of this thesis. The first part focuses on obtaining prognostic information at early stages in the case of Traumatic Brain Injury (TBI) in rat animal model using imaging data acquired at 24-hours and 7-days post injury. The obtained parametric T2 and diffusion values from DTI (Diffusion Tensor Imaging) showed significant deviations in the signal intensities from the control and were potentially useful as an early indicator of the severity of post-traumatic injury damage. DTI was especially critical in distinguishing between the cytotoxic and vasogenic edema and in identification of injury regions resolving to normal control values by day-7. These results indicate the potential of quantitative MRI as a clinical marker in predicting prognosis following TBI. The second part of this thesis focuses on studying the effect of novel therapeutic strategies employing dendritic cell (DC) based vaccinations in mice glioma model. The treatment cohorts included comparing a single dose of Azacytidine drug vs. mice getting three doses of drug per week. Another cohort was used as an untreated control group. The MRI results did not show any significant changes in between the two treated cohorts with no reduction in tumor volumes compared to the control group. The future studies would be focused on issues regarding the optimal dose for the application of DC vaccine. Together, the quantitative MRI plays an important role in the prognosis and diagnosis of the above mentioned pathologies, providing essential information about the anatomical location, micro-structural tissue environment, lesion volume and treatment response.
ContributorsAnnaldas, Bharat (Author) / Kodibagkar, Vikram (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Bhardwaj, Ratan (Committee member) / Arizona State University (Publisher)
Created2014
152958-Thumbnail Image.png
Description
Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs

Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs generated using 1,4C-1,4Bis, a cationic polymer from our laboratory demonstrated significantly higher transgene expression and exhibited lower cytotoxicities when compared to similar assemblies generated using 25 kDa poly(ethylene imine) (PEI25k-GNRs), a current standard for polymer-mediated gene delivery. Additionally, sub-toxic concentrations of 1,4C-1,4Bis-GNR nanoassemblies were employed to deliver expression vectors that express shRNA ('shRNA plasmid') against firefly luciferase gene in order to knock down expression of the protein constitutively expressed in prostate cancer cells. The roles of poly(amino ether) chemistry and zeta-potential in determining transgene expression efficacies of PAE-GNR assemblies were investigated. The theranostic potential of 1,4C-1,4Bis-GNR nanoassemblies was demonstrated using live cell two-photon induced luminescence bioimaging. The PAE class of polymers was also investigated for the one pot synthesis of both gold and silver nanoparticles using a small library poly(amino ethers) derived from linear-like polyamines. Efficient nanoparticle synthesis dependent on concentration of polymers as well as polymer chemical composition is demonstrated. Additionally, the application of poly(amino ether)-gold nanoparticles for transgene delivery is demonstrated in 22Rv1 and MB49 cancer cell lines. Base polymer, 1,4C-1,4Bis and 1,4C-1,4Bis templated and modified gold nanoparticles were compared for transgene delivery efficacies. Differences in morphology and physiochemical properties were investigated as they relate to differences in transgene delivery efficacy. There were found to be minimal differences suggestion that 1,4C-1,4Bis efficacy is not lost following use for nanoparticle modification. These results indicate that poly(amino ether)-gold nanoassemblies are a promising theranostic platform for delivery of therapeutic payloads capable of simultaneous gene silencing and bioimaging.
ContributorsRamos, James (Author) / Rege, Kaushal (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Garcia, Antonio (Committee member) / Arizona State University (Publisher)
Created2014
155790-Thumbnail Image.png
Description
Magnetic resonance flow imaging techniques provide quantitative and qualitative information that can be attributed to flow related clinical pathologies. Clinical use of MR flow quantification requires fast acquisition and reconstruction schemes, and minimization of post processing errors. The purpose of this work is to provide improvements to the post

Magnetic resonance flow imaging techniques provide quantitative and qualitative information that can be attributed to flow related clinical pathologies. Clinical use of MR flow quantification requires fast acquisition and reconstruction schemes, and minimization of post processing errors. The purpose of this work is to provide improvements to the post processing of volumetric phase contrast MRI (PCMRI) data, identify a source of flow bias for cine PCMRI that has not been previously reported in the literature, and investigate a dynamic approach to image bulk cerebrospinal fluid (CSF) drainage in ventricular shunts. The proposed improvements are implemented as three research projects.

In the first project, the improvements to post processing are made by proposing a new approach to estimating noise statistics for a single spiral acquisition, and using the estimated noise statistics to generate a mask distinguishing flow regions from background noise and static tissue in an image volume. The mask is applied towards reducing the computation time of phase unwrapping. The proposed noise estimation is shown to have comparable noise statistics as that of a vendor specific noise dynamic scan, with the added advantage of reduced scan time. The sparse flow region subset of the image volume is shown to speed up phase unwrapping for multidirectional velocity encoded 3D PCMRI scans. The second research project explores the extent of bias in cine PCMRI based flow estimates is investigated for CSF flow in the cerebral aqueduct. The dependance of the bias on spatial and temporal velocity gradient components is described. A critical velocity threshold is presented to prospectively determine the extent of bias as a function of scan acquisition parameters.

Phase contrast MR imaging is not sensitive to measure bulk CSF drainage. A dynamic approach using a CSF label is investigated in the third project to detect bulk flow in a ventricular shunt. The proposed approach uses a preparatory pulse to label CSF signal and a variable delay between the preparatory pulse and data acquisition enables tracking of the CSF bulk flow.
ContributorsRagunathan, Sudarshan (Author) / Pipe, James G (Thesis advisor) / Frakes, David (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Sadleir, Rosalind (Committee member) / Hu, Houchun (Committee member) / Arizona State University (Publisher)
Created2017
155901-Thumbnail Image.png
Description
Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp.

Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp. While the therapeutic benefits of tES are promising, the efficacy of tES treatments is limited by the knowledge of how current travels in the brain. It has been assumed that the current density and electric fields are the largest, and thus have the most effect, in brain structures nearby the electrodes. Recent studies using finite element modeling (FEM) have suggested that current patterns in the brain are diffuse and not concentrated in any particular brain structure. Although current flow modeling is useful means of informing tES target optimization, few studies have validated tES FEM models against experimental measurements. MREIT-CDI can be used to recover magnetic flux density caused by current flow in a conducting object. This dissertation reports the first comparisons between experimental data from in-vivo human MREIT-CDI during tES and results from tES FEM using head models derived from the same subjects. First, tES FEM pipelines were verified by confirming FEM predictions agreed with analytic results at the mesh sizes used and that a sufficiently large head extent was modeled to approximate results on human subjects. Second, models were used to predict magnetic flux density, and predicted and MREIT-CDI results were compared to validate and refine modeling outcomes. Finally, models were used to investigate inter-subject variability and biological side effects reported by tES subjects. The study demonstrated good agreements in patterns between magnetic flux distributions from experimental and simulation data. However, the discrepancy in scales between simulation and experimental data suggested that tissue conductivities typically used in tES FEM might be incorrect, and thus performing in-vivo conductivity measurements in humans is desirable. Overall, in-vivo MREIT-CDI in human heads has been established as a validation tool for tES predictions and to study the underlying mechanisms of tES therapies.
ContributorsIndahlastari, Aprinda (Author) / Sadleir, Rosalind J (Thesis advisor) / Abbas, James (Committee member) / Frakes, David (Committee member) / Kleim, Jeffrey (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2017
156174-Thumbnail Image.png
Description
Heart transplantation is the final treatment option for end-stage heart failure. In the United States, 70 pediatric patients die annually on the waitlist while 800 well-functioning organs get discarded. Concern for potential size-mismatch is one source of allograft waste and high waitlist mortality. Clinicians use the donor-recipient body weight (DRBW)

Heart transplantation is the final treatment option for end-stage heart failure. In the United States, 70 pediatric patients die annually on the waitlist while 800 well-functioning organs get discarded. Concern for potential size-mismatch is one source of allograft waste and high waitlist mortality. Clinicians use the donor-recipient body weight (DRBW) ratio, a standalone metric, to evaluate allograft size-match. However, this body weight metric is far removed from cardiac anatomy and neglects an individual’s anatomical variations. This thesis body of work developed a novel virtual heart transplant fit assessment tool and investigated the tool’s clinical utility to help clinicians safely expand patient donor pools.

The tool allowed surgeons to take an allograft reconstruction and fuse it to a patient’s CT or MR medical image for virtual fit assessment. The allograft is either a reconstruction of the donor’s actual heart (from CT or MR images) or an analogue from a health heart library. The analogue allograft geometry is identified from gross donor parameters using a regression model build herein. The need for the regression model is donor images may not exist or they may not become available within the time-window clinicians have to make a provisional acceptance of an offer.

The tool’s assessment suggested > 20% of upper DRBW listings could have been increased at Phoenix Children’s Hospital (PCH). Upper DRBW listings in the UNOS national database was statistically smaller than at PCH (p-values: < 0.001). Delayed sternal closure and surgeon perceived complication variables had an association (p-value: 0.000016) with 9 of the 11 cases that surgeons had perceived fit-related complications had delayed closures (p-value: 0.034809).

A tool to assess allograft size-match has been developed. Findings warrant future preclinical and clinical prospective studies to further assess the tool’s clinical utility.
ContributorsPlasencia, Jonathan (Author) / Frakes, David H (Thesis advisor) / Kodibagkar, Vikram (Thesis advisor) / Sadleir, Rosalind (Committee member) / Kamarianakis, Yiannis (Committee member) / Zangwill, Steven (Committee member) / Pophal, Stephen (Committee member) / Arizona State University (Publisher)
Created2018