Matching Items (31)
Filtering by

Clear all filters

Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsGarcia, Andres (Author) / Parekh, Mohan (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsParekh, Mohan (Author) / Garcia, Andres (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component design, a scale model roller coaster was designed. The physics of the roller coaster and its structures were analyzed and a scale model was produced. Afterward, an accelerometer was used to collect G force data as the cart moved along the track. However, the collected data differed from the expected results, as the launch speed was higher than predicted due to more friction than anticipated. As a result, further optimization of the design and models used to design the scale model roller coasters is necessary.

ContributorsCardinale, Matthew (Author) / Johnson, Kayla (Co-author) / Murthy, Raghavendra (Thesis director) / Singh, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
170871-Thumbnail Image.png
Description
A new uniaxial testing apparatus that has been proposed takes advantage of less costly methods such as 3D printing of tensile fixtures and image reference markers for accurate data acquisition. The purpose of this research is to find methods to improve the resolution, accuracy, and repeatability of this newly designed

A new uniaxial testing apparatus that has been proposed takes advantage of less costly methods such as 3D printing of tensile fixtures and image reference markers for accurate data acquisition. The purpose of this research is to find methods to improve the resolution, accuracy, and repeatability of this newly designed testing apparatus. The first phase of the research involved building a program that optimized the testing apparatus design depending on the sample being tested. It was found that the design program allowed for quick modifications on the apparatus in order to test a wide variety of samples. The second phase of research was conducted using Finite Elements to determine which sample geometry reduced the impact of misalignment error most. It found that a previously proposed design by Dr. Wonmo Kang when combined with the testing apparatus lead to a large reduction in misalignment errors.
ContributorsAyoub, Yaseen (Author) / Kang, Wonmo (Thesis director) / Kashani, Hamzeh (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-12
132111-Thumbnail Image.png
Description
An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have been studied extensively, rear spoilers have not, and their effects are not as widely known. A Computational Fluid Dynamics (CFD)

An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have been studied extensively, rear spoilers have not, and their effects are not as widely known. A Computational Fluid Dynamics (CFD) and wind tunnel study was performed to study the effects of spoilers on vehicle aerodynamics and performance. Vehicle aerodynamics is geometry dependent, meaning what applies to one car may or may not apply on another. So, the Scion FRS was chosen as the test vehicle because it is has the “classic” sports car configuration with a long hood, short rear, and 2+2 passenger cabin while also being widely sold with a plethora of aftermarket aerodynamic modifications available. Due to computing and licensing restrictions, only a 2D CFD simulation was performed in ANSYS Fluent 19.1. A surface model of the centerline of the car was created in SolidWorks and imported into ANSYS, where the domain was created. A mesh convergence study was run to determine the optimum mesh size, and Realizable k-epsilon was the chosen physics model. The wind tunnel lacked equipment to record quantifiable data, so the wind tunnel was utilized for flow visualization on a 1/24 scale car model to compare with the CFD.

0° spoilers reduced the wake area behind the car, decreasing pressure drag but also decreasing underbody flow, causing a reduction in drag and downforce. Angled spoilers increased the wake area behind the car, increasing pressure drag but also increasing underbody flow, causing an increase in drag and downforce. Longer spoilers increased these effects compared to shorter spoilers, and short spoilers at different angles did not create significantly different effects. 0° spoilers would be best suited for cases that prioritize fuel economy or straight-line acceleration and speed due to the drag reduction, while angled spoilers would be best suited for cars requiring downforce. The angle and length of spoiler would depend on the downforce needed, which is dependent on the track.
ContributorsNie, Alexander (Author) / Wells, Valana (Thesis director) / Huang, Huei-Ping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131374-Thumbnail Image.png
Description
This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used

This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used to characterize the corrosion behavior of samples before and after SMAT. Electrochemical tests indicated an improved corrosion resistance after application of SMAT process. The observed improvements in corrosion properties are potentially due to microstructural changes in the material surface induced by SMAT which encouraged the formation of a passive oxide layer. Further testing and research are required to understand the corrosion related effects of cryogenic SMAT and initial-surface finish as the COVID-19 pandemic inhibited experimentation plans.
ContributorsDeorio, Jordan Anthony (Author) / Solanki, Kiran (Thesis director) / Rajagopalan, Jagannathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131304-Thumbnail Image.png
Description
Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same for decades now. The technology of a bike is constantly

Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same for decades now. The technology of a bike is constantly getting developed and testing but the helmet is lagging behind. This project consists of designing and testing different cycling helmets through ANSYS simulations to determine the ideal geometry and features a cycling helmet must include, reducing the stress that the head experiences upon impact during a fall.
ContributorsDorman, Kyle Joseph (Author) / Kosaraju, Srinivas (Thesis director) / Bacalzo, Dean (Committee member) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131428-Thumbnail Image.png
Description
The ASU Compact X-ray Free Electron Laser (CXFEL) is a first of its kind instrument that will illuminate the processes of life and allow scientists to create more effective treatments for disease. The dimensions of the linear accelerator (LINAC) cavities must remain stable during operation, for a change in the

The ASU Compact X-ray Free Electron Laser (CXFEL) is a first of its kind instrument that will illuminate the processes of life and allow scientists to create more effective treatments for disease. The dimensions of the linear accelerator (LINAC) cavities must remain stable during operation, for a change in the geometry alters the standing wave microwave energy resonance within the cavities and leads to reflected rather than coupled and useful microwave energy to electric field coupling. This disturbs the electron bunch acceleration dynamics critical to the ultimate generation of x-ray pulses. Cooling water must be supplied to the electron generating RF-GUN, and linear accelerator (LINAC) structures at unique flowrate and temperature setpoints that are specific to the operating mode of the CXFEL. Design specifications for the water supply to the RF-GUN and three LINACs and were made for the nominal operating mode, which adds a 3 kW heat load to the water. To maintain steady cavity dimensions, water must be supplied to each device under test at 30.0 ºC ± 0.06 ºC. The flowrate of water must be 3.5 GPM to the RF-GUN and 2.5 GPM to each of the three LINACs with ± 0.01 GPM flowrate resolution. The primary function of the Dedicated-Precision Thermal Trim Unit (D-PTTU) is to control the flowrate and temperature of water supply to each device under test. A simplified model of the system was developed to select valves that would meet our design specifications for flowrate and temperature control. After using this model for valve selection, a detailed system model was created to simulate relevant coupled-domain physics of the integrated system. The detailed system model was used to determine the critical sensitivities of the system and will be used to optimize the performance of the system in the future. Before the detailed system model can be verified and tuned with experiments, the sensors were calibrated in an ice-bath to ensure the sensors measure accurate and precise values. During initial testing, the D-PTTU was able to achieve ± 0.02 ºC temperature resolution, which exceeds the design specification by a factor of three.
ContributorsGardeck, Alex John (Author) / Holl, Mark (Thesis director) / Smith, Dean (Committee member) / Department of Physics (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131469-Thumbnail Image.png
Description
This thesis project examines the stability margin for different rotor configurations for a quadcopter and compares them against each other to determine the most stable flight configuration possible. The first configuration develops a “standard” for quadcopters with each motor in a corner of a cube at a 60-degree angle from

This thesis project examines the stability margin for different rotor configurations for a quadcopter and compares them against each other to determine the most stable flight configuration possible. The first configuration develops a “standard” for quadcopters with each motor in a corner of a cube at a 60-degree angle from the Y-Axis. The remaining tests increase the angle five degrees per configuration, allowing the motors to get incrementally closer to each other until no longer viable. Five different tests are outlined below depicting the microscopic changes in the pitch and roll of the device. The on-board controller in the quad-copter tracks both the acceleration and gyroscopic movements of the device to obtain the stability margin of each test. Computational analysis is then used to calculate and compare the values found to determine the most stable configuration.
ContributorsCorino, Tyler Michael (Author) / Kuo, Chen-Yuan (Thesis director) / Lynch, John (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Due to the Human foot constantly growing at a rapid pace, typical gel and mold orthotics quickly become ineffective as they no longer fit the foot properly. In pediatric patients, this situation is even more pronounced as their feet change geometry at an even more rapid rate. This project consists

Due to the Human foot constantly growing at a rapid pace, typical gel and mold orthotics quickly become ineffective as they no longer fit the foot properly. In pediatric patients, this situation is even more pronounced as their feet change geometry at an even more rapid rate. This project consists of designing an adjustable sizing Pediatric Orthotic for use in children as well as adult patient’s shoes to provide better foot support than not using one at all, or for that matter an inappropriately sized orthotic. This idea incorporates multiple air bladders that can hold pressure and adjust shape as is necessary to best accommodate the patient’s foot geometry to reduce the deformation and average stress presented within the foot. Results will be obtained by running simulation models of these phenomena in MATLAB as well as Ansys softwares. From the results, by incorporating two bladders into the middle arch of a ‘control’ patient who has a perfectly symmetric arch, maximum deformation of the foot was reduced by approximately 17%. Under this same scenario, average stress in the foot dropped by approximately 13%. In a more abnormal ‘experimental’ case, of a largely asymmetric arch, it was found that max deformation and average stress in the foot dropped by 21% and 17% respectively. This leads to the conclusion that incorporating this design will indeed lower the stress and fulfill the requirement of an orthotic while also being a removable and adjustable air bladder to fulfill the adjustability constraint.
ContributorsNaqvi, Abbas Ali (Author) / Benson, David (Thesis director) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12