Matching Items (21)
Filtering by

Clear all filters

135981-Thumbnail Image.png
Description
Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries.

Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries. Often times this becomes a deterrent from learning computer science at all. Especially in high school, students may not want to spend a year or more simply learning the syntax of a programming language. In order to overcome these issues, as well as to mitigate the issues caused by Microsoft discontinuing their Visual Programming Language (VPL), we have decided to implement a new VPL, ASU-VPL, based on Microsoft's VPL. ASU-VPL provides an environment where users can focus on algorithms and worry less about syntactic issues. ASU-VPL was built with the concepts of Robot as a Service and workflow based development in mind. As such, ASU-VPL is designed with the intention of allowing web services to be added to the toolbox (e.g. WSDL and REST services). ASU-VPL has strong support for multithreaded operations, including event driven development, and is built with Microsoft VPL users in mind. It provides support for many different robots, including Lego's third generation robots, i.e. EV3, and any open platform robots. To demonstrate the capabilities of ASU-VPL, this paper details the creation of an Intel Edison based robot and the use of ASU-VPL for programming both the Intel based robot and an EV3 robot. This paper will also discuss differences between ASU-VPL and Microsoft VPL as well as differences between developing for the EV3 and for an open platform robot.
ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis director) / Cheng, Calvin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
131123-Thumbnail Image.png
Description
Gamification is used to provide an entertaining alternative to educate an individual on a topic that has proven to be difficult, confusing, or undesirable. This thesis describes the design of a video game whose goal was to provide a way for coders and non-coders to educate themselves on programming scopes

Gamification is used to provide an entertaining alternative to educate an individual on a topic that has proven to be difficult, confusing, or undesirable. This thesis describes the design of a video game whose goal was to provide a way for coders and non-coders to educate themselves on programming scopes while also being entertained in the process. Reaching the goal required using the puzzle genre to create a concept where programming scopes would serve as the primary mechanic while also using various other programming concepts to complement it. These concepts include variables, values, functions, programming statements, and conditions.
In order to ensure that the game worked both as an educational tool as well as an entertaining one, informal testers were used with various degrees of experience in both coding and video games. After reaching the end of the game, each of the testers demonstrated that they understood the programming concepts in their video game form. However, this understanding came after additional verbal help was supplied and illustrated that the tutorial section of the game would need to be re-worked in order to efficiently demonstrate each concept.
ContributorsLucero, Elijah Ray (Author) / Bazzi, Rida (Thesis director) / Selgrad, Justin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131477-Thumbnail Image.png
Description
The goal of this product was to create a highly customizable application in which any individual, musician or not, can create a harmony for the user’s melody. This Automating Music Composer is built on the underlying rules of music composition, rules that are unique for each type of music available.

The goal of this product was to create a highly customizable application in which any individual, musician or not, can create a harmony for the user’s melody. This Automating Music Composer is built on the underlying rules of music composition, rules that are unique for each type of music available. This program is built on rules that are similar to how a Finite State Machine works (Fig 1). Each state represents a different chord in a given key, where the first roman numeral represents the first note in the chord progression. Each transition represents the action that can be taken by the chord progression, or the next note that can be reached by the current note. The user is able to manipulate these rules and styles, adjust different musical parameters to their liking, and is able to input their own melody, which then will output a unique harmony. This product aims to bridge the gap between predictive technologies and musical composition. Allowing the user to be more involved in the composition process helps the program to act as a tool for the user, rather than a separate entity that simply gives the user a completed recording. This allows the user to appreciate and understand what they are helping to produce more than they would if they were to simply be an inactive consumer of a random music composer. This product is meant to feel like an extension of the user, rather than a separate tool.
ContributorsKumar, Dhantin (Co-author) / Lopez, Christian (Co-author) / Nakamura, Mutsumi (Thesis director) / Blount, Andrew (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132147-Thumbnail Image.png
Description
Less than half of all premedical applicants get accepted into a medical school, 39.3% of applicants to be precise, and that statistic is based on the number of matriculants out of the total applicants in 2015. With such a discouraging acceptance rate, many students who start out as premed are

Less than half of all premedical applicants get accepted into a medical school, 39.3% of applicants to be precise, and that statistic is based on the number of matriculants out of the total applicants in 2015. With such a discouraging acceptance rate, many students who start out as premed are often not towards the end of their undergraduate career and post-graduation because they do not feel prepared for medical school. It’s difficult for premed students to find all the information they need in one place rather than going from place to place or school website to school website. Additionally, it can be a hassle for premeds to keep track of all their coursework and calculate separate GPAs for each category especially due to how annoying Excel spread sheets can be. This is where the conceptualization of Premed Portfolio comes in. Premed Portfolio is a prototype mobile application. Premed Portfolio aims to streamline the process of preparing for medical school by guiding students to create a portfolio aimed to address the most important aspects of a medical school application. Students will be able to keep track of their cumulative GPA, BCPM (also known as science/math) GPA, MCAT Scores, prerequisite coursework and many more targeted areas of medical school. Premed Portfolio will also hope to use the stats that students provide and educate them on their chances of getting into medical school.
ContributorsSiddique, Shabab (Co-author, Co-author) / Rahman, Ahnaf (Co-author) / Patel, Dhruv (Co-author) / Sarwat Abdelghany Aly Elsayed, Mohamed (Thesis director) / Coursen, Jerry (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132570-Thumbnail Image.png
DescriptionThe goal of this study is to equip administrators and instructors with a deeper understanding of the apparent cheating problem in Computer Science courses, with proposed solutions to lower academic dishonesty from the students’ perspective.
ContributorsAl Yasari, Farah (Co-author) / Alyasari, Farah (Co-author) / Tadayon-Navabi, Farideh (Thesis director) / Bazzi, Rida (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Technical innovation has always played a part in live theatre, whether in the form of mechanical pieces like lifts and trapdoors to the more recent integration of digital media. The advances of the art form encourage the development of technology, and at the same time, technological development enables the advancement

Technical innovation has always played a part in live theatre, whether in the form of mechanical pieces like lifts and trapdoors to the more recent integration of digital media. The advances of the art form encourage the development of technology, and at the same time, technological development enables the advancement of theatrical expression. As mechanics, lighting, sound, and visual media have made their way into the spotlight, advances in theatrical robotics continue to push for their inclusion in the director's toolbox. However, much of the technology available is gated by high prices and unintuitive interfaces, designed for large troupes and specialized engineers, making it difficult to access for small schools and students new to the medium. As a group of engineering students with a vested interest in the development of the arts, this thesis team designed a system that will enable troupes from any background to participate in the advent of affordable automation. The intended result of this thesis project was to create a robotic platform that interfaces with custom software, receiving commands and transmitting position data, and to design that software so that a user can define intuitive cues for their shows. In addition, a new pathfinding algorithm was developed to support free-roaming automation in a 2D space. The final product consisted of a relatively inexpensive (< $2000) free-roaming platform, made entirely with COTS and standard materials, and a corresponding control system with cue design, wireless path following, and position tracking. This platform was built to support 1000 lbs, and includes integrated emergency stopping. The software allows for custom cue design, speed variation, and dynamic path following. Both the blueprints and the source code for the platform and control system have been released to open-source repositories, to encourage further development in the area of affordable automation. The platform itself was donated to the ASU School of Theater.
ContributorsHollenbeck, Matthew D. (Co-author) / Wiebel, Griffin (Co-author) / Winnemann, Christopher (Thesis director) / Christensen, Stephen (Committee member) / Computer Science and Engineering Program (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134066-Thumbnail Image.png
Description
For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier

For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier to entry for the field of robotics and make it exponentially more accessible for people around the world. For our honors thesis, we chose to take the design from BCN3D and attempt to build their robot, to see how accessible the design truly is. Although their designs were not perfect and we were forced to make some adjustments to the 3D files, overall the work put forth by the people at BCN3D was extremely useful in successfully building a robotic arm that is programmed with ease.
ContributorsCohn, Riley (Co-author) / Petty, Charles (Co-author) / Ben Amor, Hani (Thesis director) / Yong, Sze Zheng (Committee member) / Computer Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133932-Thumbnail Image.png
Description
The spread of fake news (rumors) has been a growing problem on the internet in the past few years due to the increase of social media services. People share fake news articles on social media sometimes without knowing that those articles contain false information. Not knowing whether an article is

The spread of fake news (rumors) has been a growing problem on the internet in the past few years due to the increase of social media services. People share fake news articles on social media sometimes without knowing that those articles contain false information. Not knowing whether an article is fake or real is a problem because it causes social media news to lose credibility. Prior research on fake news has focused on how to detect fake news, but efforts towards controlling fake news articles on the internet are still facing challenges. Some of these challenges include; it is hard to collect large sets of fake news data, it is hard to collect locations of people who are spreading fake news, and it is difficult to study the geographic distribution of fake news. To address these challenges, I am examining how fake news spreads in the United States (US) by developing a geographic visualization system for misinformation. I am collecting a set of fake news articles from a website called snopes.com. After collecting these articles I am extracting the keywords from each article and storing them in a file. I then use the stored keywords to search on Twitter in order to find out the locations of users who spread the rumors. Finally, I mark those locations on a map in order to show the geographic distribution of fake news. Having access to large sets of fake news data, knowing the locations of people who are spreading fake news, and being able to understand the geographic distribution of fake news will help in the efforts towards addressing the fake news problem on the internet by providing target areas.
ContributorsNgweta, Lilian Mathias (Author) / Liu, Huan (Thesis director) / Wu, Liang (Committee member) / Software Engineering (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133944-Thumbnail Image.png
Description
Imagining Climate (www.imaginingclimate.com) is a social media project that gauges how the public thinks about climate change in their community. Users will view climate data from 2017, view projected data for 2050, and then be given a prompt to imagine what the future looks like to them and write a

Imagining Climate (www.imaginingclimate.com) is a social media project that gauges how the public thinks about climate change in their community. Users will view climate data from 2017, view projected data for 2050, and then be given a prompt to imagine what the future looks like to them and write a short narrative story about their vision. Imagining Climate hopes to provide a public source of data for all and use imaginative writing to help users understand how other members of their communities think about climate change.
ContributorsLeung, Ellery Hermes (Author) / Popova, Laura (Thesis director) / Tarrant, Philip (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134113-Thumbnail Image.png
Description
Since the release of Discord in March of 2015 it has become the choice VoIP client for 25 million users, pulling in more each day from many sources including online video games with no voice chat, such as League of Legends. With such an expansive user base and many servers

Since the release of Discord in March of 2015 it has become the choice VoIP client for 25 million users, pulling in more each day from many sources including online video games with no voice chat, such as League of Legends. With such an expansive user base and many servers hosting multiple users during all times of the day, for a server admin to always be monitoring users is unreasonable. AhriBot aims to solve this problem by providing general administration through a command system to a server while it is logged onto that server. Specifically, AhriBot will be tailored for use on servers where League of Legends is primarily being played. Using commands issued to AhriBot, users can get statistics about their current game. By providing a set of features for general users, and a more specific set of features for League of Legends, AhriBot provides a greater experience and will help players to have quicker access to information about the game without having to travel to multiple outside sources.
ContributorsKoehler, Brendan Joseph (Author) / Balasooriya, Janaka (Thesis director) / Faucon, Philippe (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12