Matching Items (3)
Filtering by

Clear all filters

155010-Thumbnail Image.png
Description
Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot

Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot systems, when a magnetic field is present, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. Secondly, a scheme based on geometrical rotation of rectangular devices to effectively modulate the conductance fluctuations is presented. Thirdly, when graphene is placed on a substrate of heavy metal, Rashba spin-orbit interaction of substantial strength can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Finally, a problem using graphene systems with electron-electron interactions described by the Hubbard Hamiltonian in the setting of resonant tunneling is investigated.

Another interesting problem in quantum transport is the effect of disorder or random impurities since it is inevitable in real experiments. At first, for a twodimensional Dirac ring, as the disorder density is systematically increased, the persistent current decreases slowly initially and then plateaus at a finite nonzero value, indicating remarkable robustness of the persistent currents, which cannot be discovered in normal metal and semiconductor rings. In addition, in a Floquet system with a ribbon structure, the conductance can be remarkably enhanced by onsite disorder.

Recent years have witnessed significant interest in nanoscale physical systems, such as semiconductor supperlattices and optomechanical systems, which can exhibit distinct collective dynamical behaviors. Firstly, a system of two optically coupled optomechanical cavities is considered and the phenomenon of synchronization transition associated with quantum entanglement transition is discovered. Another useful issue is nonlinear dynamics in semiconductor superlattices caused by its key potential application lies in generating radiation sources, amplifiers and detectors in the spectral range of terahertz. In such a system, transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt.
ContributorsYing, Lei (Author) / Lai, Ying-Cheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Chen, Tingyong (Committee member) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2016
155277-Thumbnail Image.png
Description
This dissertation aims to study and understand relevant issues related to the electronic, spin and valley transport in two-dimensional Dirac systems for different given physical settings. In summary, four key findings are achieved.

First, studying persistent currents in confined chaotic Dirac fermion systems with a ring geometry and an applied Aharonov-Bohm

This dissertation aims to study and understand relevant issues related to the electronic, spin and valley transport in two-dimensional Dirac systems for different given physical settings. In summary, four key findings are achieved.

First, studying persistent currents in confined chaotic Dirac fermion systems with a ring geometry and an applied Aharonov-Bohm flux, unusual whispering-gallery modes with edge-dependent currents and spin polarization are identified. They can survive for highly asymmetric rings that host fully developed classical chaos. By sustaining robust persistent currents, these modes can be utilized to form a robust relativistic quantum two-level system.

Second, the quantized topological edge states in confined massive Dirac fermion systems exhibiting a remarkable reverse Stark effect in response to an applied electric field, and an electrically or optically controllable spin switching behavior are uncovered.

Third, novel wave scattering and transport in Dirac-like pseudospin-1 systems are reported. (a), for small scatterer size, a surprising revival resonant scattering with a peculiar boundary trapping by forming unusual vortices is uncovered. Intriguingly, it can persist in arbitrarily weak scatterer strength regime, which underlies a superscattering behavior beyond the conventional scenario. (b), for larger size, a perfect caustic phenomenon arises as a manifestation of the super-Klein tunneling effect. (c), in the far-field, an unexpected isotropic transport emerges at low energies.

Fourth, a geometric valley Hall effect (gVHE) originated from fractional singular Berry flux is revealed. It is shown that gVHE possesses a nonlinear dependence on the Berry flux with asymmetrical resonance features and can be considerably enhanced by electrically controllable resonant valley skew scattering. With the gVHE, efficient valley filtering can arise and these phenomena are robust against thermal fluctuations and disorder averaging.
ContributorsXu, Hongya (Author) / Lai, Ying-Cheng (Thesis advisor) / Bliss, Daniel (Committee member) / Yu, Hongbin (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2017
157610-Thumbnail Image.png
Description
Graphene has been extensively researched for both scientific and technological interests since its first isolation from graphite. The excellent transport properties and long spin diffusion length of graphene make it a promising material for electronic and spintronic device applications. This dissertation deals with the optimization of magnetic field

Graphene has been extensively researched for both scientific and technological interests since its first isolation from graphite. The excellent transport properties and long spin diffusion length of graphene make it a promising material for electronic and spintronic device applications. This dissertation deals with the optimization of magnetic field sensing in graphene and the realization of nanoparticle induced ferromagnetism in graphene towards spintronic device applications.

Graphene has been used as a channel material for magnetic sensors demonstrating the potential for very high sensitivities, especially for Hall sensors, due to its extremely high mobility and low carrier concentration. However, the two-carrier nature of graphene near the charge neutrality point (CNP) causes a nonlinearity issue for graphene Hall sensors, which limits useful operating ranges and has not been fully studied. In this dissertation, a two-channel model was used to describe the transport of graphene near the CNP. The model was carefully validated by experiments and then was used to explore the optimization of graphene sensor performance by tuning the gate operating bias under realistic constraints on linearity and power dissipation.

The manipulation of spin in graphene that is desired for spintronic applications is limited by its weak spin-orbit coupling (SOC). Proximity induced ferromagnetism (PIFM) from an adjacent ferromagnetic insulator (FMI) provides a method for enhancing SOC in graphene without degrading its transport properties. However, suitable FMIs are uncommon and difficult to integrate with graphene. In this dissertation, PIFM in graphene from an adjacent Fe3O4 magnetic nanoparticle (MNP) array was demonstrated for the first time. Observation of the anomalous Hall effect (AHE) in the device structures provided the signature of PIFM. Comparison of the test samples with different control samples conclusively proved that exchange interaction at the MNP/graphene interface was responsible for the observed characteristics. The PIFM in graphene was shown to persist at room temperature and to be gate-tunable, which are desirable features for electrically controlled spintronic device applications.

The observation of PIFM in the MNP/graphene devices indicates that the spin transfer torque (STT) from spin-polarized current in the graphene can interact with the magnetization of the MNPs. If there is sufficient STT, spin torque oscillation (STO) could be realized in this structure. In this dissertation, three methods were employed to search for signatures of STO in the devices. STO was not observed in our devices, most likely due to the weak spin-polarization for current injected from conventional ferromagnetic contacts to graphene. Calculation indicates that graphene should provide sufficient spin-polarized current for exciting STO in optimized structures that miniaturize the device area and utilize optimized tunnel-barrier contacts for improved spin injection.
ContributorsSong, Guibin (Author) / Kiehl, Richard A. (Committee member) / Yu, Hongbin (Committee member) / Chen, Tingyong (Committee member) / Rizzo, Nicholas D (Committee member) / Arizona State University (Publisher)
Created2019