Matching Items (5)
Filtering by

Clear all filters

Description
To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how

To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how to build low-cost multi-capability robot platform

that can be used for conducting FAME research.

A TFC-KIT car chassis was augmented to provide a suite of substantive capabilities.

The augmented vehicle (FreeSLAM Robot) costs less than $500 but offers the capability

of commercially available vehicles costing over $2000.

All demonstrations presented involve rear-wheel drive FreeSLAM robot. The following

summarizes the key hardware demonstrations presented and analyzed:

(1)Cruise (v, ) control along a line,

(2) Cruise (v, ) control along a curve,

(3) Planar (x, y) Cartesian Stabilization for rear wheel drive vehicle,

(4) Finish the track with camera pan tilt structure in minimum time,

(5) Finish the track without camera pan tilt structure in minimum time,

(6) Vision based tracking performance with different cruise speed vx,

(7) Vision based tracking performance with different camera fixed look-ahead distance L,

(8) Vision based tracking performance with different delay Td from vision subsystem,

(9) Manually remote controlled robot to perform indoor SLAM,

(10) Autonomously line guided robot to perform indoor SLAM.

For most cases, hardware data is compared with, and corroborated by, model based

simulation data. In short, the thesis uses low-cost self-designed rear-wheel

drive robot to demonstrate many capabilities that are critical in order to reach the

longer-term FAME goal.
ContributorsLu, Xianglong (Author) / Rodriguez, Armando Antonio (Thesis advisor) / Berman, Spring (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2016
187806-Thumbnail Image.png
Description
This thesis presents a study on the user adaptive variable impedance control of a wearable ankle robot for robot-aided rehabilitation with a primary focus on enhancing accuracy and speed. The controller adjusts the impedance parameters based on the user's kinematic data to provide personalized assistance. Bayesian optimization is employed to

This thesis presents a study on the user adaptive variable impedance control of a wearable ankle robot for robot-aided rehabilitation with a primary focus on enhancing accuracy and speed. The controller adjusts the impedance parameters based on the user's kinematic data to provide personalized assistance. Bayesian optimization is employed to minimize an objective function formulated from the user's kinematic data to adapt the impedance parameters per user, thereby enhancing speed and accuracy. Gaussian process is used as a surrogate model for optimization to account for uncertainties and outliers inherent to human experiments. Student-t process based outlier detection is utilized to enhance optimization robustness and accuracy. The efficacy of the optimization is evaluated based on measures of speed, accuracy, and effort, and compared with an untuned variable impedance controller during 2D curved trajectory following tasks. User effort was measured based on muscle activation data from the tibialis anterior, peroneus longus, soleus, and gastrocnemius muscles. The optimized controller was evaluated on 15 healthy subjects and demonstrated an average increase in speed of 9.85% and a decrease in deviation from the ideal trajectory of 7.57%, compared to an unoptimized variable impedance controller. The strategy also reduced the time to complete tasks by 6.57%, while maintaining a similar level of user effort.
ContributorsManoharan, Gautham (Author) / Lee, Hyunglae (Thesis advisor) / Berman, Spring (Committee member) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2023
171848-Thumbnail Image.png
Description
Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with

Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with obstacles, and deadlocks. Despite extensive research on these control problems, there are still challenges in designing controllers that (1) are scalable with the number of agents; (2) have theoretical guarantees on collision-free agent navigation; and (3) can be used when the states of the agents and the environment are only partially observable. Existing centralized and distributed control architectures have limited scalability due to their computational complexity and communication requirements, while decentralized control architectures are often effective only under impractical assumptions that do not hold in real-world implementations. The main objective of this dissertation is to develop and evaluate decentralized approaches for multi-agent motion control that enable agents to use their onboard sensors and computational resources to decide how to move through their environment, with limited or absent inter-agent communication and external supervision. Specifically, control approaches are designed for multi-segment manipulators and mobile robot collectives to achieve position and pose (position and orientation) stabilization, trajectory tracking, and collision and deadlock avoidance. These control approaches are validated in both simulations and physical experiments to show that they can be implemented in real-time while remaining computationally tractable. First, kinematic controllers are proposed for position stabilization and trajectory tracking control of two- or three-dimensional hyper-redundant multi-segment manipulators. Next, robust and gradient-based feedback controllers are presented for individual holonomic and nonholonomic mobile robots that achieve position stabilization, trajectory tracking control, and obstacle avoidance. Then, nonlinear Model Predictive Control methods are developed for collision-free, deadlock-free pose stabilization and trajectory tracking control of multiple nonholonomic mobile robots in known and unknown environments with obstacles, both static and dynamic. Finally, a feedforward proportional-derivative controller is defined for collision-free velocity tracking of a moving ground target by multiple unmanned aerial vehicles.
ContributorsSalimi Lafmejani, Amir (Author) / Berman, Spring (Thesis advisor) / Tsakalis, Konstantinos (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2022
158028-Thumbnail Image.png
Description
For the last 50 years, oscillator modeling in ranging systems has received considerable

attention. Many components in a navigation system, such as the master oscillator

driving the receiver system, as well the master oscillator in the transmitting system

contribute significantly to timing errors. Algorithms in the navigation processor must

be able to predict and

For the last 50 years, oscillator modeling in ranging systems has received considerable

attention. Many components in a navigation system, such as the master oscillator

driving the receiver system, as well the master oscillator in the transmitting system

contribute significantly to timing errors. Algorithms in the navigation processor must

be able to predict and compensate such errors to achieve a specified accuracy. While

much work has been done on the fundamentals of these problems, the thinking on said

problems has not progressed. On the hardware end, the designers of local oscillators

focus on synthesized frequency and loop noise bandwidth. This does nothing to

mitigate, or reduce frequency stability degradation in band. Similarly, there are not

systematic methods to accommodate phase and frequency anomalies such as clock

jumps. Phase locked loops are fundamentally control systems, and while control

theory has had significant advancement over the last 30 years, the design of timekeeping

sources has not advanced beyond classical control. On the software end,

single or two state oscillator models are typically embedded in a Kalman Filter to

alleviate time errors between the transmitter and receiver clock. Such models are

appropriate for short term time accuracy, but insufficient for long term time accuracy.

Additionally, flicker frequency noise may be present in oscillators, and it presents

mathematical modeling complications. This work proposes novel H∞ control methods

to address the shortcomings in the standard design of time-keeping phase locked loops.

Such methods allow the designer to address frequency stability degradation as well

as high phase/frequency dynamics. Additionally, finite-dimensional approximants of

flicker frequency noise that are more representative of the truth system than the

tradition Gauss Markov approach are derived. Last, to maintain timing accuracy in

a wide variety of operating environments, novel Banks of Adaptive Extended Kalman

Filters are used to address both stochastic and dynamic uncertainty.
ContributorsEchols, Justin A (Author) / Bliss, Daniel W (Thesis advisor) / Tsakalis, Konstantinos S (Committee member) / Berman, Spring (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2020
161260-Thumbnail Image.png
Description
Over the past few decades, there is an increase in demand for various ground robot applications such as warehouse management, surveillance, mapping, infrastructure inspection, etc. This steady increase in demand has led to a significant rise in the nonholonomic differential drive vehicles (DDV) research. Albeit extensive work has been done

Over the past few decades, there is an increase in demand for various ground robot applications such as warehouse management, surveillance, mapping, infrastructure inspection, etc. This steady increase in demand has led to a significant rise in the nonholonomic differential drive vehicles (DDV) research. Albeit extensive work has been done in developing various control laws for trajectory tracking, point stabilization, formation control, etc., there are still problems and critical questions in regards to design, modeling, and control of DDV’s - that need to be adequately addressed. In this thesis, three different dynamical models are considered that are formed by varying the input/output parameters of the DDV model. These models are analyzed to understand their stability, bandwidth, input-output coupling, and control design properties. Furthermore, a systematic approach has been presented to show the impact of design parameters such as mass, inertia, radius of the wheels, and center of gravity location on the dynamic and inner-loop (speed) control design properties. Subsequently, extensive simulation and hardware trade studies have been conductedto quantify the impact of design parameters and modeling variations on the performance of outer-loop cruise and position control (along a curve). In addition to this, detailed guidelines are provided for when a multi-input multi-output (MIMO) control strategy is advisable over a single-input single-output (SISO) control strategy; when a less stable plant is preferable over a more stable one in order to accommodate performance specifications. Additionally, a multi-robot trajectory tracking implementation based on receding horizon optimization approach is also presented. In most of the optimization-based trajectory tracking approaches found in the literature, only the constraints imposed by the kinematic model are incorporated into the problem. This thesis elaborates the fundamental problem associated with these methods and presents a systematic approach to understand and quantify when kinematic model based constraints are sufficient and when dynamic model-based constraints are necessary to obtain good tracking properties. Detailed instructions are given for designing and building the DDV based on performance specifications, and also, an open-source platform capable of handling high-speed multi-robot research is developed in C++.
ContributorsManne, Sai Sravan (Author) / Rodriguez, Armando A (Thesis advisor) / Si, Jennie (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2021