Matching Items (24)
Filtering by

Clear all filters

153545-Thumbnail Image.png
Description
For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey

For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (µXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale µXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging.

In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering `zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs.

The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the volumetric quantification of parameters which are indicative of both electromigration tolerance of solders and the dominant mechanisms for atomic migration in response to current stressing. This work is aimed to further the community's understanding of failure-causing electromigration processes in industrially relevant material systems for microelectronic interconnect applications and to advance the capability of available characterization techniques for their interrogation.
ContributorsMertens, James Charles Edwin (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2015
153099-Thumbnail Image.png
Description
In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD)

In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD) employed to generate the packing ensembles will be discussed. A large number of 2D packing configurations of superdisks are subsequently analyzed, through which a relatively accurate theoretical scheme for packing-fraction prediction based on local particle contact configurations is proposed and validated via additional numerical simulations. Moreover, the studies on binary ellipsoid packing in 3D are briefly discussed and the effects of different geometrical parameters on the final packing fraction are analyzed.
ContributorsXu, Yaopengxiao (Author) / Jiao, Yang (Thesis advisor) / Oswald, Jay (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
156283-Thumbnail Image.png
Description
In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a

In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a brief review is made about these three material systems. In Chapter 2, detailed discussion of the statistical morphological descriptors and a stochastic optimization approach for microstructure reconstruction is presented. In Chapter 3, the lattice particle method for micromechanical analysis of complex heterogeneous materials is introduced. In Chapter 4, a new class of hyperuniform heterogeneous material with superior mechanical properties is investigated. In Chapter 5, a bio-material system, i.e., cellularized collagen gel is modeled using correlation functions and stochastic reconstruction to study the collective dynamic behavior of the embed tumor cells. In chapter 6, LMPA soft robotic system is generated by generalizing the correlation functions and the rigidity tunability of this smart composite is discussed. In Chapter 7, a future work plan is presented.
ContributorsXu, Yaopengxiao (Author) / Jiao, Yang (Thesis advisor) / Liu, Yongming (Committee member) / Wang, Qing Hua (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2018
156466-Thumbnail Image.png
Description
Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and

Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and thermal interfaces need to be addressed. This work evaluates and characterizes thermo-mechanical damage in two material systems – Electroplated Tin and Sintered Nano-Silver solder.

Tin plated electrical contacts are prone to formation of single crystalline tin whiskers which can cause short circuiting. A mechanistic model of their formation, evolution and microstructural influence is still not fully understood. In this work, growth of mechanically induced tin whiskers/hillocks is studied using in situ Nano-indentation and Electron Backscatter Diffraction (EBSD). Electroplated tin was indented and monitored in vacuum to study growth of hillocks without the influence of atmosphere. Thermal aging was done to study the effect of intermetallic compounds. Grain orientation of the hillocks and the plastically deformed region surrounding the indent was studied using Focused Ion Beam (FIB) lift-out technique. In addition, micropillars were milled on the surface of electroplated Sn using FIB to evaluate the yield strength and its relation to Sn grain size.

High operating temperature power electronics use wide band-gap semiconductor devices (Silicon Carbide/Gallium Nitride). The operating temperature of these devices can exceed 250oC, preventing use of traditional Sn-solders as Thermal Interface materials (TIM). At high temperature, the thermomechanical stresses can severely degrade the reliability and life of the device. In this light, new non-destructive approach is needed to understand the damage mechanism when subjected to reliability tests such as thermal cycling. In this work, sintered nano-Silver was identified as a promising high temperature TIM. Sintered nano-Silver samples were fabricated and their shear strength was evaluated. Thermal cycling tests were conducted and damage evolution was characterized using a lab scale 3D X-ray system to periodically assess changes in the microstructure such as cracks, voids, and porosity in the TIM layer. The evolution of microstructure and the effect of cycling temperature during thermal cycling are discussed.
ContributorsLujan Regalado, Irene (Author) / Chawla, Nikhilesh (Thesis advisor) / Frear, Darrel (Committee member) / Rajagopalan, Jagannathan (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156954-Thumbnail Image.png
Description
Nanolaminate materials are layered composites with layer thickness ≤ 100 nm. They exhibit unique properties due to their small length scale, the presence of a high number of interfaces and the effect of imposed constraint. This thesis focuses on the mechanical behavior of Al/SiC nanolaminates. The high strength of ceramics

Nanolaminate materials are layered composites with layer thickness ≤ 100 nm. They exhibit unique properties due to their small length scale, the presence of a high number of interfaces and the effect of imposed constraint. This thesis focuses on the mechanical behavior of Al/SiC nanolaminates. The high strength of ceramics combined with the ductility of Al makes this combination desirable. Al/SiC nanolaminates were synthesized through magnetron sputtering and have an overall thickness of ~ 20 μm which limits the characterization techniques to microscale testing methods. A large amount of work has already been done towards evaluating their mechanical properties under indentation loading and micropillar compression. The effects of temperature, orientation and layer thickness have been well established. Al/SiC nanolaminates exhibited a flaw dependent deformation, anisotropy with respect to loading direction and strengthening due to imposed constraint. However, the mechanical behavior of nanolaminates under tension and fatigue loading has not yet been studied which is critical for obtaining a complete understanding of their deformation behavior. This thesis fills this gap and presents experiments which were conducted to gain an insight into the behavior of nanolaminates under tensile and cyclic loading. The effect of layer thickness, tension-compression asymmetry and effect of a wavy microstructure on mechanical response have been presented. Further, results on in situ micropillar compression using lab-based X-ray microscope through novel experimental design are also presented. This was the first time when a resolution of 50 nms was achieved during in situ micropillar compression in a lab-based setup. Pores present in the microstructure were characterized in 3D and sites of damage initiation were correlated with the channel of pores present in the microstructure.

The understanding of these deformation mechanisms paved way for the development of co-sputtered Al/SiC composites. For these composites, Al and SiC were sputtered together in a layer. The effect of change in the atomic fraction of SiC on the microstructure and mechanical properties were evaluated. Extensive microstructural characterization was performed at the nanoscale level and Al nanocrystalline aggregates were observed dispersed in an amorphous matrix. The modulus and hardness of co- sputtered composites were much higher than their traditional counterparts owing to denser atomic packing and the absence of synthesis induced defects such as pores and columnar boundaries.
ContributorsSingh, Somya (Author) / Chawla, Nikhilesh (Thesis advisor) / Neithalath, Narayanan (Committee member) / Jiao, Yang (Committee member) / Mara, Nathan (Committee member) / Arizona State University (Publisher)
Created2018
133194-Thumbnail Image.png
Description
Even in the largest public university in the country, computer related degrees such as Computer Science, Computer Systems Engineering and Software Engineering have low enrollment rates and high dropout rates. This is interesting because the careers that require these degrees are marketed as the highest paying and most powerful. The

Even in the largest public university in the country, computer related degrees such as Computer Science, Computer Systems Engineering and Software Engineering have low enrollment rates and high dropout rates. This is interesting because the careers that require these degrees are marketed as the highest paying and most powerful. The goal of this project was to find out what the students of Arizona State University (ASU) thought about these majors and why they did or did not pick them. A total of 206 students were surveyed from a variety of sources including upper level classes, lower level classes and Barrett, the Honors College. Survey questions asked why the students picked their current major, if they had a previous major and why did they switch, and if the students had considered one of the three computer related degrees. Almost all questions were open ended, meaning the students did not have multiple choice answers and instead could write as short or as long of a response as needed. Responses were grouped based on a set of initial hypotheses and any emerging trends. These groups were displayed in several different bar graphs broken down by gender, grade level and category of student (stayed in a computer related degree, left one, joined one or picked a non-computer related degree). Trends included students of all grade levels picking their major because they were passionate or interested in the subject. This may suggest that college students are set in their path and will not switch majors easily. Students also reported seeing computer related degrees as too difficult and intimidating. However, given the low (when compared to all of ASU) number of students surveyed, the conclusions and trends given cannot be representative of ASU as a whole. Rather, they are just representative of this sample population. Further work on this study, if time permitted, would be to try to survey more students and question some of the trends established to find more specific answers.
ContributorsMeza, Edward L (Author) / Meuth, Ryan (Thesis director) / Miller, Phillip (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
135246-Thumbnail Image.png
Description
The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way to assess the quality of these web services in order

The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way to assess the quality of these web services in order to ensure their reliability and accuracy. This project explores different ways in which services can be tested and evaluated through the design of various testing techniques and their implementations in a web application, which can be used by students or developers to test their web services.
ContributorsHilliker, Mark Paul (Author) / Chen, Yinong (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133334-Thumbnail Image.png
Description
Engineering an object means engineering the process that creates the object. Today, software can make the task of tracking these processes robust and straightforward. When engineering requirements are strict and strenuous, software custom-built for such processes can prove essential. The work for this project was developing ICDB, an inventory control

Engineering an object means engineering the process that creates the object. Today, software can make the task of tracking these processes robust and straightforward. When engineering requirements are strict and strenuous, software custom-built for such processes can prove essential. The work for this project was developing ICDB, an inventory control and build management system created for spacecraft engineers at ASU to record each step of their engineering processes. In-house development means ICDB is more precisely designed around its users' functionality and cost requirements than most off-the-shelf commercial offerings. By placing a complex relational database behind an intuitive web application, ICDB enables organizations and their users to create and store parts libraries, assembly designs, purchasing and location records for inventory items, and more.
ContributorsNoss, Karl Friederich (Author) / Davulcu, Hasan (Thesis director) / Rios, Ken (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134066-Thumbnail Image.png
Description
For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier

For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier to entry for the field of robotics and make it exponentially more accessible for people around the world. For our honors thesis, we chose to take the design from BCN3D and attempt to build their robot, to see how accessible the design truly is. Although their designs were not perfect and we were forced to make some adjustments to the 3D files, overall the work put forth by the people at BCN3D was extremely useful in successfully building a robotic arm that is programmed with ease.
ContributorsCohn, Riley (Co-author) / Petty, Charles (Co-author) / Ben Amor, Hani (Thesis director) / Yong, Sze Zheng (Committee member) / Computer Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134797-Thumbnail Image.png
Description
With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or personal assistant, tend to range from expensive and useful to

With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or personal assistant, tend to range from expensive and useful to inexpensive and not efficient. This leaves a low cost niche into the market of a virtual office assistant or manager to display messages and to help direct people in obtaining contact information. The development of a low cost solution revolves around the software needed to solve the various problems an accessible and user friendly Virtual Interface in which the owner of the Virtual Office Manager/Assistant can communicate to colleagues who are at standby outside of the owner's office and vice versa. This interface will be allowing the owner to describe the status pertaining to their absence or any other message sent to the interface. For example, the status of the owner's work commute can be described with a simple "Running Late" phrase or a message like "Busy come back in 10 minutes". In addition, any individual with an interest to these entries will have the opportunity to respond back because the device will provide contact information. When idle, the device will show supplemental information such as the owner's calendar and name. The scope of this will be the development and testing of solutions to achieve these goals.
ContributorsOffenberger, Spencer Eliot (Author) / Kozicki, Michael (Thesis director) / Goryll, Michael (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12