Matching Items (27)
Filtering by

Clear all filters

151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151426-Thumbnail Image.png
Description
While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and

While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and feasibility of a piezoelectric tire was done. This includes the development of a circuit that incorporates piezoceramic elements, energy harvesting circuitry, and an energy storage device. A single phase circuit was designed using an ac-dc diode rectifier. An electrolytic capacitor was used as the energy storage device. A financial feasibility was also done to determine targets for manufacturing cost and sales price. These models take into account market trends for high performance tires, economies of scale, and the possibility of government subsidies. This research will help understand the potential for the marketability of a piezoelectric energy harvesting tire that can create electricity for remote use. This study found that there are many obstacles that must be addressed before a piezoelectric tire can be marketed to the general public. The power output of this device is miniscule compared to an alkaline battery. In order for this device to approach the power output of an alkaline battery the weight of the device would also become an issue. Additionally this device is very costly compared to the average bicycle tire. Lastly, this device is extreme fragile and easily broken. In order for this device to become marketable the issues of power output, cost, weight, and durability must all be successfully overcome.
ContributorsMalotte, Christopher (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
153545-Thumbnail Image.png
Description
For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey

For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (µXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale µXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging.

In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering `zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs.

The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the volumetric quantification of parameters which are indicative of both electromigration tolerance of solders and the dominant mechanisms for atomic migration in response to current stressing. This work is aimed to further the community's understanding of failure-causing electromigration processes in industrially relevant material systems for microelectronic interconnect applications and to advance the capability of available characterization techniques for their interrogation.
ContributorsMertens, James Charles Edwin (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2015
153099-Thumbnail Image.png
Description
In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD)

In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD) employed to generate the packing ensembles will be discussed. A large number of 2D packing configurations of superdisks are subsequently analyzed, through which a relatively accurate theoretical scheme for packing-fraction prediction based on local particle contact configurations is proposed and validated via additional numerical simulations. Moreover, the studies on binary ellipsoid packing in 3D are briefly discussed and the effects of different geometrical parameters on the final packing fraction are analyzed.
ContributorsXu, Yaopengxiao (Author) / Jiao, Yang (Thesis advisor) / Oswald, Jay (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
154078-Thumbnail Image.png
Description
Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss in power, various nondestructive and destructive techniques were used to indicate possible causes of loss in performance. This is a two-part thesis. Part 1 presents non-destructive test results and analysis and Part 2 presents destructive test results and analysis.
ContributorsChicca, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2015
156283-Thumbnail Image.png
Description
In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a

In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a brief review is made about these three material systems. In Chapter 2, detailed discussion of the statistical morphological descriptors and a stochastic optimization approach for microstructure reconstruction is presented. In Chapter 3, the lattice particle method for micromechanical analysis of complex heterogeneous materials is introduced. In Chapter 4, a new class of hyperuniform heterogeneous material with superior mechanical properties is investigated. In Chapter 5, a bio-material system, i.e., cellularized collagen gel is modeled using correlation functions and stochastic reconstruction to study the collective dynamic behavior of the embed tumor cells. In chapter 6, LMPA soft robotic system is generated by generalizing the correlation functions and the rigidity tunability of this smart composite is discussed. In Chapter 7, a future work plan is presented.
ContributorsXu, Yaopengxiao (Author) / Jiao, Yang (Thesis advisor) / Liu, Yongming (Committee member) / Wang, Qing Hua (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2018
156394-Thumbnail Image.png
Description
Encapsulant is a key packaging component of photovoltaic (PV) modules, which protects the solar cell from physical, environmental and electrical damages. Ethylene-vinyl acetate (EVA) is one of the major encapsulant materials used in the PV industry. This work focuses on indoor accelerated ultraviolet (UV) stress testing and characterization to investigate

Encapsulant is a key packaging component of photovoltaic (PV) modules, which protects the solar cell from physical, environmental and electrical damages. Ethylene-vinyl acetate (EVA) is one of the major encapsulant materials used in the PV industry. This work focuses on indoor accelerated ultraviolet (UV) stress testing and characterization to investigate the EVA discoloration and delamination in PV modules by using various non-destructive characterization techniques, including current-voltage (IV) measurements, UV fluorescence (UVf) and colorimetry measurements. Mini-modules with glass/EVA/cell/EVA/backsheet construction were fabricated in the laboratory with two types of EVA, UV-cut EVA (UVC) and UV-pass EVA (UVP).

The accelerated UV testing was performed in a UV chamber equipped with UV lights at an ambient temperature of 50°C, little or no humidity and total UV dosage of 400 kWh/m2. The mini-modules were maintained at three different temperatures through UV light heating by placing different thickness of thermal insulation sheets over the backsheet. Also, prior to thermal insulation sheet placement, the backsheet and laminate edges were fully covered with aluminum tape to prevent oxygen diffusion into the module and hence the photobleaching reaction.

The characterization results showed that mini-modules with UV-cut EVA suffered from discoloration while the modules with UV-pass EVA suffered from delamination. UVf imaging technique has the capability to identify the discoloration region in the UVC modules in the very early stage when the discoloration is not visible to the naked eyes, whereas Isc measurement is unable to measure the performance loss until the color becomes visibly darker. YI also provides the direct evidence of yellowing in the encapsulant. As expected, the extent of degradation due to discoloration increases with the increase in module temperature. The Isc loss is dictated by both the regions – discolored area at the center and non-discolored area at the cell edges, whereas the YI is only determined at the discolored region due to low probe area. This led to the limited correlation between Isc and YI in UVC modules.

In case of UVP modules, UV radiation has caused an adverse impact on the interfacial adhesion between the EVA and solar cell, which was detected from UVf images and severe Isc loss. No change in YI confirms that the reason for Isc loss is not due to yellowing but the delamination.

Further, the activation energy of encapsulant discoloration was estimated by using Arrhenius model on two types of data, %Isc drop and ΔYI. The Ea determined from the change in YI data for the EVA encapsulant discoloration reaction without the influence of oxygen and humidity is 0.61 eV. Based on the activation energy determined in this work and hourly weather data of any site, the degradation rate for the encaspulant browning mode can be estimated.
ContributorsDolia, Kshitiz (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Green, Matthew (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2018
156466-Thumbnail Image.png
Description
Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and

Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and thermal interfaces need to be addressed. This work evaluates and characterizes thermo-mechanical damage in two material systems – Electroplated Tin and Sintered Nano-Silver solder.

Tin plated electrical contacts are prone to formation of single crystalline tin whiskers which can cause short circuiting. A mechanistic model of their formation, evolution and microstructural influence is still not fully understood. In this work, growth of mechanically induced tin whiskers/hillocks is studied using in situ Nano-indentation and Electron Backscatter Diffraction (EBSD). Electroplated tin was indented and monitored in vacuum to study growth of hillocks without the influence of atmosphere. Thermal aging was done to study the effect of intermetallic compounds. Grain orientation of the hillocks and the plastically deformed region surrounding the indent was studied using Focused Ion Beam (FIB) lift-out technique. In addition, micropillars were milled on the surface of electroplated Sn using FIB to evaluate the yield strength and its relation to Sn grain size.

High operating temperature power electronics use wide band-gap semiconductor devices (Silicon Carbide/Gallium Nitride). The operating temperature of these devices can exceed 250oC, preventing use of traditional Sn-solders as Thermal Interface materials (TIM). At high temperature, the thermomechanical stresses can severely degrade the reliability and life of the device. In this light, new non-destructive approach is needed to understand the damage mechanism when subjected to reliability tests such as thermal cycling. In this work, sintered nano-Silver was identified as a promising high temperature TIM. Sintered nano-Silver samples were fabricated and their shear strength was evaluated. Thermal cycling tests were conducted and damage evolution was characterized using a lab scale 3D X-ray system to periodically assess changes in the microstructure such as cracks, voids, and porosity in the TIM layer. The evolution of microstructure and the effect of cycling temperature during thermal cycling are discussed.
ContributorsLujan Regalado, Irene (Author) / Chawla, Nikhilesh (Thesis advisor) / Frear, Darrel (Committee member) / Rajagopalan, Jagannathan (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156954-Thumbnail Image.png
Description
Nanolaminate materials are layered composites with layer thickness ≤ 100 nm. They exhibit unique properties due to their small length scale, the presence of a high number of interfaces and the effect of imposed constraint. This thesis focuses on the mechanical behavior of Al/SiC nanolaminates. The high strength of ceramics

Nanolaminate materials are layered composites with layer thickness ≤ 100 nm. They exhibit unique properties due to their small length scale, the presence of a high number of interfaces and the effect of imposed constraint. This thesis focuses on the mechanical behavior of Al/SiC nanolaminates. The high strength of ceramics combined with the ductility of Al makes this combination desirable. Al/SiC nanolaminates were synthesized through magnetron sputtering and have an overall thickness of ~ 20 μm which limits the characterization techniques to microscale testing methods. A large amount of work has already been done towards evaluating their mechanical properties under indentation loading and micropillar compression. The effects of temperature, orientation and layer thickness have been well established. Al/SiC nanolaminates exhibited a flaw dependent deformation, anisotropy with respect to loading direction and strengthening due to imposed constraint. However, the mechanical behavior of nanolaminates under tension and fatigue loading has not yet been studied which is critical for obtaining a complete understanding of their deformation behavior. This thesis fills this gap and presents experiments which were conducted to gain an insight into the behavior of nanolaminates under tensile and cyclic loading. The effect of layer thickness, tension-compression asymmetry and effect of a wavy microstructure on mechanical response have been presented. Further, results on in situ micropillar compression using lab-based X-ray microscope through novel experimental design are also presented. This was the first time when a resolution of 50 nms was achieved during in situ micropillar compression in a lab-based setup. Pores present in the microstructure were characterized in 3D and sites of damage initiation were correlated with the channel of pores present in the microstructure.

The understanding of these deformation mechanisms paved way for the development of co-sputtered Al/SiC composites. For these composites, Al and SiC were sputtered together in a layer. The effect of change in the atomic fraction of SiC on the microstructure and mechanical properties were evaluated. Extensive microstructural characterization was performed at the nanoscale level and Al nanocrystalline aggregates were observed dispersed in an amorphous matrix. The modulus and hardness of co- sputtered composites were much higher than their traditional counterparts owing to denser atomic packing and the absence of synthesis induced defects such as pores and columnar boundaries.
ContributorsSingh, Somya (Author) / Chawla, Nikhilesh (Thesis advisor) / Neithalath, Narayanan (Committee member) / Jiao, Yang (Committee member) / Mara, Nathan (Committee member) / Arizona State University (Publisher)
Created2018
157020-Thumbnail Image.png
Description
Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will

Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will lead to realize longer module lifetime and reduced levelized cost of energy. As many as 86 failure modes are observed in PV modules [1] and series resistance increase is one of the major durability issues of all. Series resistance constitutes emitter sheet resistance, metal-semiconductor contact resistance, and resistance across the metal-solder ribbon. Solder bond degradation at the cell interconnect is one of the primary causes for increase in series resistance, which is also considered to be an invisible defect [1]. Combination of intermetallic compounds (IMC) formation during soldering and their growth due to solid state diffusion over its lifetime result in formation of weak interfaces between the solar cell and the interconnect. Thermal cycling under regular operating conditions induce thermo-mechanical fatigue over these weak interfaces resulting in contact reduction or loss. Contact reduction or loss leads to increase in series resistance which further manifests into power and fill factor loss. The degree of intermixing of metallic interfaces and contact loss depends on climatic conditions as temperature and humidity (moisture ingression into the PV module laminate) play a vital role in reaction kinetics of these layers. Modules from Arizona and Florida served as a good sample set to analyze the effects of hot and humid climatic conditions respectively. The results obtained in the current thesis quantifies the thickness of IMC formation from SEM-EDS profiles, where similar modules obtained from different climatic conditions were compared. The results indicate the thickness of the IMC and detachment degree to be growing with age and operating temperatures of the module. This can be seen in CuxSny IMC which is thicker in the case of Arizona module. The results obtained from FL

ii

aged modules also show that humidity accelerates the formation of IMC as they showed thicker AgxSny layer and weak interconnect-contact interfaces as compared to Arizona modules. It is also shown that climatic conditions have different effects on rate at which CuxSny and AgxSny intermetallic compounds are formed.
ContributorsBuddha, Viswa Sai Pavan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Alford, Terry (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2018