Matching Items (17)
Filtering by

Clear all filters

152104-Thumbnail Image.png
Description
Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial photosynthesis: to convert water to hydrogen using solar radiation as

Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial photosynthesis: to convert water to hydrogen using solar radiation as the sole energy input and ideally do so with the use of low cost, abundant materials. Constructing photoelectrochemical cells incorporating photoanodes structurally reminiscent of those used in dye sensitized photovoltaic solar cells presents one approach to establishing an artificial photosynthetic system. The work presented herein describes the production, integration, and study of water oxidation catalysts, molecular dyes, and metal oxide based photoelectrodes carried out in the pursuit of developing solar water splitting systems.
ContributorsSherman, Benjamin D (Author) / Moore, Thomas (Thesis advisor) / Moore, Ana (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
151366-Thumbnail Image.png
Description
Mitochondria produce most of the ATP needed for the cell as an energy source. It is well known that cellular respiration results in oxidative damage to the cell due to the production of reactive oxygen species (ROS). Mitochondrial dysfunction is believed to contribute to a number of degenerative diseases; because

Mitochondria produce most of the ATP needed for the cell as an energy source. It is well known that cellular respiration results in oxidative damage to the cell due to the production of reactive oxygen species (ROS). Mitochondrial dysfunction is believed to contribute to a number of degenerative diseases; because of this the mitochondrial respiratory chain is considered as potential drug target. A few series of idebenone analogues with quinone, pyridinol and pyrimidinol redox cores have been synthesized and evaluated as antioxidants able to protect cellular integrity and, more specifically, mitochondrial function. The compounds exhibited a range of activities. The activities observed were used for the design of analogues with enhanced properties as antioxidants. Compounds were identified which provide better protection against oxidative stress than idebenone, and it is thought that they do so catalytically.
ContributorsArce Amezquita, Pablo M (Author) / Hecht, Sidney M. (Thesis advisor) / Moore, Ana (Committee member) / Rose, Seth (Committee member) / Arizona State University (Publisher)
Created2012
152604-Thumbnail Image.png
Description
A clean and sustainable alternative to fossil fuels is solar energy. For efficient use of solar energy to be realized, artificial systems that can effectively capture and convert sunlight into a usable form of energy have to be developed. In natural photosynthesis, antenna chlorophylls and carotenoids capture sunlight and transfer

A clean and sustainable alternative to fossil fuels is solar energy. For efficient use of solar energy to be realized, artificial systems that can effectively capture and convert sunlight into a usable form of energy have to be developed. In natural photosynthesis, antenna chlorophylls and carotenoids capture sunlight and transfer the resulting excitation energy to the photosynthetic reaction center (PRC). Small reorganization energy, λ and well-balanced electronic coupling between donors and acceptors in the PRC favor formation of a highly efficient charge-separated (CS) state. By covalently linking electron/energy donors to acceptors, organic molecular dyads and triads that mimic natural photosynthesis were synthesized and studied. Peripherally linked free base phthalocyanine (Pc)-fullerene (C60) and a zinc (Zn) phthalocyanine-C60 dyads were synthesized. Photoexcitation of the Pc moiety resulted in singlet-singlet energy transfer to the attached C60, followed by electron transfer. The lifetime of the CS state was 94 ps. Linking C60 axially to silicon (Si) Pc, a lifetime of the CS state of 4.5 ns was realized. The exceptionally long-lived CS state of the SiPc-C60 dyad qualifies it for applications in solar energy conversion devices. A secondary electron donor was linked to the dyad to obtain a carotenoid (Car)-SiPc-C60 triad and ferrocene (Fc)-SiPc-C60 triad. Excitation of the SiPc moiety resulted in fast electron transfer from the Car or Fc secondary electron donors to the C60. The lifetime of the CS state was 17 ps and 1.2 ps in Car-SiPc-C60 and Fc-SiPc-C60, respectively. In Chapter 3, an efficient synthetic route that yielded regioselective oxidative porphyrin dimerization is presented. Using Cu2+ as the oxidant, meso-β doubly-connected fused porphyrin dimers were obtained in very high yields. Removal of the copper from the macrocycle affords a free base porphyrin dimer. This allows for exchange of metals and provides a route to a wider range of metallporphyrin dimers. In Chapter 4, the development of an efficient and an expedient route to bacteriopurpurin synthesis is discussed. Meso-10,20- diformylation of porphyrin was achieved and one-pot porphyrin diacrylate synthesis and cyclization to afford bacteriopurpurin was realized. The bacteriopurpurin had a reduction potential of - 0.85 V vs SCE and λmax, 845 nm.
ContributorsArero, Jaro (Author) / Gust, Devens (Thesis advisor) / Moore, Ana (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
152279-Thumbnail Image.png
Description
Natural photosynthesis dedicates specific proteins to achieve the modular division of the essential roles of solar energy harvesting, charge separation and carrier transport within natural photosynthesis. The modern understanding of the fundamental photochemistry by which natural photosynthesis operates is well advanced and solution state mimics of the key photochemical processes

Natural photosynthesis dedicates specific proteins to achieve the modular division of the essential roles of solar energy harvesting, charge separation and carrier transport within natural photosynthesis. The modern understanding of the fundamental photochemistry by which natural photosynthesis operates is well advanced and solution state mimics of the key photochemical processes have been reported previously. All of the early events in natural photosynthesis responsible for the conversion of solar energy to electric potential energy occur within proteins and phospholipid membranes that act as scaffolds for arranging the active chromophores. Accordingly, for creating artificial photovoltaic (PV) systems, scaffolds are required to imbue structure to the systems. An approach to incorporating modular design into solid-state organic mimics of the natural system is presented together with how conductive scaffolds can be utilized in organic PV systems. To support the chromophore arrays present within this design and to extract separated charges from within the structure, linear pyrazine-containing molecular ribbons were chosen as candidates for forming conductive linear scaffolds that could be functionalized orthogonally to the linear axis. A series of donor-wire-acceptor (D-W-A) compounds employing porphyrins as the donors and a C60 fullerene adduct as the acceptors have been synthesized for studying the ability of the pyrazine-containing hetero-aromatic wires to mediate photoinduced electron transfer between the porphyrin donor and fullerene acceptor. Appropriate substitutions were made and the necessary model compounds useful for dissecting the complex photochemistry that the series is expected to display were also synthesized. A dye was synthesized using a pyrazine-containing heteroaromatic spacer that features two porphyrin chromophores. The dye dramatically outperforms the control dye featuring the same porphyrin and a simple benzoic acid linker. A novel, highly soluble 6+kDa extended phthalocyanine was also synthesized and exhibits absorption out to 900nm. The extensive functionalization of the extended phthalocyanine core with dodecyl groups enabled purification and characterization of an otherwise insoluble entity. Finally, in the interest of incorporating modular design into plastic solar cells, a series of porphyrin-containing monomers have been synthesized that are intended to form dyadic and triadic molecular-heterojunction polymers with dedicated hole and electron transport pathways during electrochemical polymerization.
ContributorsWatson, Brian Lyndon (Author) / Gust, Devens (Thesis advisor) / Gould, Ian (Committee member) / Moore, Ana L (Committee member) / Arizona State University (Publisher)
Created2013
152823-Thumbnail Image.png
Description
Natural hydrogenases catalyze the reduction of protons to molecular hydrogen reversibly under mild conditions; these enzymes have an unusual active site architecture, in which a diiron site is connected to a cubane type [4Fe-4S] cluster. Due to the relevance of this reaction to energy production, and in particular to sustainable

Natural hydrogenases catalyze the reduction of protons to molecular hydrogen reversibly under mild conditions; these enzymes have an unusual active site architecture, in which a diiron site is connected to a cubane type [4Fe-4S] cluster. Due to the relevance of this reaction to energy production, and in particular to sustainable fuel production, there have been substantial amount of research focused on developing biomimetic organometallic models. However, most of these organometallic complexes cannot revisit the structural and functional fine-tuning provided by the protein matrix as seen in the natural enzyme. The goal of this thesis is to build a protein based functional mimic of [Fe-Fe] hydrogenases. I used a 'retrosynthetic' approach that separates out two functional aspects of the natural enzyme. First, I built an artificial electron transfer domain by engineering two [4Fe-4S] cluster binding sites into an existing protein, DSD, which is a de novo designed domain swapped dimer. The resulting protein, DSD-bis[4Fe-4S], contains two clusters at a distance of 36 Å . I then varied distance between two clusters using vertical translation along the axis of the coiled coil; the resulting protein demonstrates efficient electron transfer to/from redox sites. Second, I built simple, functional artificial hydrogenases by using an artificial amino acid comprising a 1,3 dithiol moiety to anchor a biomimetic [Fe-Fe] active site within the protein scaffold Correct incorporation of the cluster into a model helical peptide was verified by UV-Vis, FTIR, ESI-MS and CD spectroscopy. This synthetic strategy is extended to the de novo design of more complex protein architectures, four-helix bundles that host the di-iron cluster within the hydrophobic core. In a separate approach, I developed a generalizable strategy to introduce organometallic catalytic sites into a protein scaffold. I introduced a biomimetic organometallic complex for proton reduction by covalent conjugation to biotin. The streptavidin-bound complex is significantly more efficient in photocatalytic hydrogen production than the catalyst alone. With these artificial proteins, it will be possible to explore the effect of second sphere interactions on the activity of the diiron center, and to include in the design properties such as compatibility with conductive materials and electrodes.
ContributorsRoy, Anindya (Author) / Ghirlanda, Giovanna (Thesis advisor) / Yan, Hao (Committee member) / Gust, Devens (Committee member) / Arizona State University (Publisher)
Created2014
152843-Thumbnail Image.png
Description
The first chapter reviews three decades of artificial photosynthetic research conducted by the A. Moore, T. Moore, and D. Gust research group. Several carotenoid (Car) and tetrapyrrole containing molecules were synthesized and investigated for excitation energy transfer (EET), photoregulation, and photoprotective functions. These artificial photosynthetic compounds mimicked known processes and

The first chapter reviews three decades of artificial photosynthetic research conducted by the A. Moore, T. Moore, and D. Gust research group. Several carotenoid (Car) and tetrapyrrole containing molecules were synthesized and investigated for excitation energy transfer (EET), photoregulation, and photoprotective functions. These artificial photosynthetic compounds mimicked known processes and investigated proposed mechanisms in natural systems. This research leads to a greater understanding of photosynthesis and design concepts for organic based solar energy conversion devices. The second and third chapters analyze the triplet energy transfer in carotenoid containing dyads. Transient absorption, time-resolved FTIR and resonance Raman spectra revealed that in a 4-amide linked carotenophthalocyanine dyads the Car triplet state is shared across the larger conjugated system, which is similar to protein complexes in oxygenic photosynthetic organisms. In a carotenopurpurin dyad (CarPur) a methylene ester covalent bond prevents the purpurin (Pur) from influencing the Car triplet based on the transient absorption, time-resolved FTIR and resonance Raman spectra. Thus CarPur resembles the antenna proteins from anoxygenic photosynthetic bacteria. Additional examples of carotenoporphyrin dyads further demonstrates the need for orbital overlap for ultrafast triplet energy transfer and the formations of possible intramolecular charge transfer state. The fourth chapter studies a 4-amino phenyl carotenophthalocyanine and its model compounds using high temporal resolution transient absorption spectroscopy techniques. EET from the Car second excited (S2) state to the phthalocyanine (Pc) was determined to be 37% and a coupled hot ground state (S*)/Pc excited state spectrum was observed. Excitation of the tetrapyrrole portion of the dyad did not yield any kinetic differences, but there was an S* signal during the excited states of the dyad. This demonstrates the EET and photoregulating properties of this artificial photosynthetic compound are similar to those of natural photosynthesis. The last chapter covers the synthesis of silicon Pc (SiPc) dyes and the methods for attaching them to gold nanoparticles and flat gold surfaces. SiPc attached to patterned gold surfaces had unperturbed fluorescence, however the selectivity for the gold was low, so alternative materials are under investigation to improve the dye's selectivity for the gold surface.
ContributorsWongCarter, Katherine (Author) / Moore, Ana L (Thesis advisor) / Gust, Devens (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
153338-Thumbnail Image.png
Description
Small molecules have proven to be very important tools for exploration of biological systems including diagnosis and treatment of lethal diseases like cancer. Fluorescent probes have been extensively used to further amplify the utilization of small molecules. The manipulation of naturally occurring biological targets with the help of synthetic compounds

Small molecules have proven to be very important tools for exploration of biological systems including diagnosis and treatment of lethal diseases like cancer. Fluorescent probes have been extensively used to further amplify the utilization of small molecules. The manipulation of naturally occurring biological targets with the help of synthetic compounds is the focus of the work described in this thesis.

Bleomycins (BLMs) are a class of water soluble, glycopeptide-derived antitumor antibiotics consisting of a structurally complicated unnatural hexapeptide and a disaccharide, clinically used as an anticancer chemotherapeutic agent at an exceptionally low therapeutic dose. The efficiency of BLM is likely achieved both by selective localization within tumor cells and selective binding to DNA followed by efficient double-strand cleavage. The disaccharide moiety is responsible for the tumor cell targeting properties of BLM. A recent study showed that both BLM and its disaccharide, conjugated to the cyanine dye Cy5**, bound selectively to cancer cells. Thus, the disaccharide moiety alone recapitulates the tumor cell targeting properties of BLM. Work presented here describes the synthesis of the fluorescent carbohydrate conjugates. A number of dye-labeled modified disaccharides and monosaccharides were synthesized to study the nature of the participation of the carbamoyl moiety in the mechanism of tumor cell recognition and uptake by BLM saccharides. It was demonstrated that the carbamoylmannose moiety of BLM is the smallest structural entity capable for the cellular targeting and internalization, and the carbamoyl functionality is indispensible for tumor cell targeting. It was also confirmed that BLM is a modular molecule, composed of a tumor cell targeting moiety (the saccharide) attached to a cytotoxic DNA cleaving domain (the BLM aglycone). These finding encouraged us to further synthesize carbohydrate probes for PET imaging and to conjugate the saccharide moiety with cytotoxins for targeted delivery to tumor cells.

The misacylated suppressor tRNA technique has enabled the site-specific incorporation of noncanonical amino acids into proteins. The focus of the present work was the synthesis of unnatural lysine analogues with nucleophilic properties for incorporation at position 72 of the lyase domain of human DNA polymerase beta, a multifunctional enzyme with dRP lyase and polymerase activity.
ContributorsBhattacharya, Chandrabali (Author) / Hecht, Sidney M. (Thesis advisor) / Moore, Ana (Committee member) / Gould, Ian R (Committee member) / Arizona State University (Publisher)
Created2014
153176-Thumbnail Image.png
Description
Mitochondria are crucial intracellular organelles which play a pivotal role in providing energy to living organisms in the form of adenosine triphosphate (ATP). The mitochondrial electron transport chain (ETC) coupled with oxidative phosphorylation (OX-PHOS) transforms the chemical energy of amino acids, fatty acids and sugars to ATP. The mitochondrial electron

Mitochondria are crucial intracellular organelles which play a pivotal role in providing energy to living organisms in the form of adenosine triphosphate (ATP). The mitochondrial electron transport chain (ETC) coupled with oxidative phosphorylation (OX-PHOS) transforms the chemical energy of amino acids, fatty acids and sugars to ATP. The mitochondrial electron transport system consumes nearly 90% of the oxygen used by the cell. Reactive oxygen species (ROS) in the form of superoxide anions (O2*-) are generated as byproduct of cellular metabolism due to leakage of electrons from complex I and complex III to oxygen. Under normal conditions, the effects of ROS are offset by a variety of antioxidants (enzymatic and non-enzymatic).

Mitochondrial dysfunction has been proposed in the etiology of various pathologies, including cardiovascular and neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, ischemia-reperfusion (IR) injury, diabetes and aging. To treat these disorders, it is imperative to target mitochondria, especially the electron transport chain. One of the methodologies currently used for the treatment of mitochondrial and neurodegenerative diseases where endogenous antioxidant defenses are inadequate for protecting against ROS involves the administration of exogenous antioxidants.

As part of our pursuit of effective neuroprotective drugs, a series of pyridinol and pyrimidinol analogues have been rationally designed and synthesized. All the analogues were evaluated for their ability to quench lipid peroxidation and reactive oxygen species (ROS), and preserve mitochondrial membrane potential (Δm) and support ATP synthesis. These studies are summarized in Chapter 2.

Drug discovery and lead identification can be reinforced by assessing the metabolic fate of orally administered drugs using simple microsomal incubation experiments. Accordingly, in vitro microsomal studies were designed and carried out using bovine liver microsomes to screen available pyridinol and pyrimidinol analogues for their metabolic lability. The data obtained was utilized for an initial assessment of potential bioavailability of the compounds screened and is summarized fully in Chapter 3.
ContributorsAlam, Mohammad Parvez (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian R (Committee member) / Moore, Ana (Committee member) / Arizona State University (Publisher)
Created2014
153344-Thumbnail Image.png
Description
Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based on electrochemical trapping of carbon dioxide using pyridine and derivatives. Optimization of this process requires a detailed understanding of the mechanisms of the reactions of reduced pyridines with carbon dioxide, which are not currently well known. This thesis describes a detailed mechanistic study of the nucleophilic and Bronsted basic properties of the radical anion of bipyridine as a model pyridine derivative, formed by one-electron reduction, with particular emphasis on the reactions with carbon dioxide. A time-resolved spectroscopic method was used to characterize the key intermediates and determine the kinetics of the reactions of the radical anion and its protonated radical form. Using a pulsed nanosecond laser, the bipyridine radical anion could be generated in-situ in less than 100 ns, which allows fast reactions to be monitored in real time. The bipyridine radical anion was found to be a very powerful one-electron donor, Bronsted base and nucleophile. It reacts by addition to the C=O bonds of ketones with a bimolecular rate constant around 1* 107 M-1 s-1. These are among the fastest nucleophilic additions that have been reported in literature. Temperature dependence studies demonstrate very low activation energies and large Arrhenius pre-exponential parameters, consistent with very high reactivity. The kinetics of E2 elimination, where the radical anion acts as a base, and SN2 substitution, where the radical anion acts as a nucleophile, are also characterized by large bimolecular rate constants in the range ca. 106 - 107 M-1 s-1. The pKa of the bipyridine radical anion was measured using a kinetic method and analysis of the data using a Marcus theory model for proton transfer. The bipyridine radical anion is found to have a pKa of 40±5 in DMSO. The reorganization energy for the proton transfer reaction was found to be 70±5 kJ/mol. The bipyridine radical anion was found to react very rapidly with carbon dioxide, with a bimolecular rate constant of 1* 108 M-1 s-1 and a small activation energy, whereas the protonated radical reacted with carbon dioxide with a rate constant that was too small to measure. The kinetic and thermodynamic data obtained in this work can be used to understand the mechanisms of the reactions of pyridines with carbon dioxide under reducing conditions.
ContributorsRanjan, Rajeev (Author) / Gould, Ian R (Thesis advisor) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeff (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2015
150701-Thumbnail Image.png
Description
The sun provides Earth with a virtually limitless source of energy capable of sustaining all of humanity's needs. Photosynthetic organisms have exploited this energy for eons. However, efficiently converting solar radiation into a readily available and easily transportable form is complex. New materials with optimized physical, electrochemical, and photophysical properties

The sun provides Earth with a virtually limitless source of energy capable of sustaining all of humanity's needs. Photosynthetic organisms have exploited this energy for eons. However, efficiently converting solar radiation into a readily available and easily transportable form is complex. New materials with optimized physical, electrochemical, and photophysical properties are at the forefront of organic solar energy conversion research. In the work presented herein, porphyrin and organometallic dyes with widely-varied properties were studied for solar energy applications. In one project, porphyrins and porphyrin-fullerene dyads with aniline-like features were polymerized via electrochemical methods into semiconductive thin films. These were shown to have high visible light absorption and stable physical and electrochemical properties. However, experimentation using porphyrin polymer films as both the light absorber and semiconductor in a photoelectrochemical cell showed relatively low efficiency of converting absorbed solar energy into electricity. In separate work, tetra-aryl porphyrin derivatives were examined in conjunction with wide-bandgap semiconductive oxides TiO2 and SnO2. Carboxylic acid-, phosphonic acid-, and silatrane-functionalized porphyrins were obtained or synthesized for attachment to the metal oxide species. Electrochemical, photophysical, photoelectrochemical, and surface stability studies of the porphyrins were performed for comparative purposes. The order of surface linkage stability on TiO2 in alkaline conditions, from most stable to least, was determined to be siloxane > phosphonate > carboxylate. Finally, porphyrin dimers fused via their meso and beta positions were synthesized using a chemical oxidative synthesis with a copper(II) oxidant. The molecules exhibit strong absorption in the visible and near-infrared spectral regions as well as interesting electrochemical properties suggesting possible applications in light harvesting and redox catalysis.
ContributorsBrennan, Bradley J (Author) / Gust, Devens (Thesis advisor) / Moore, Thomas A. (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2012