Matching Items (28)
Filtering by

Clear all filters

Description
The object of the present study is to examine methods in which the company can optimize their costs on third-party suppliers whom oversee other third-party trade labor. The third parties in scope of this study are suspected to overstaff their workforce, thus overcharging the company. We will introduce a complex

The object of the present study is to examine methods in which the company can optimize their costs on third-party suppliers whom oversee other third-party trade labor. The third parties in scope of this study are suspected to overstaff their workforce, thus overcharging the company. We will introduce a complex spreadsheet model that will propose a proper project staffing level based on key qualitative variables and statistics. Using the model outputs, the Thesis team proposes a headcount solution for the company and problem areas to focus on, going forward. All sources of information come from company proprietary and confidential documents.
ContributorsLoo, Andrew (Co-author) / Brennan, Michael (Co-author) / Sheiner, Alexander (Co-author) / Hertzel, Michael (Thesis director) / Simonson, Mark (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / WPC Graduate Programs (Contributor) / School of Accountancy (Contributor)
Created2014-05
148485-Thumbnail Image.png
Description

The COVID-19 pandemic has and will continue to radically shift the workplace. An increasing percentage of the workforce desires flexible working options and, as such, firms are likely to require less office space going forward. Additionally, the economic downturn caused by the pandemic provides an opportunity for companies to secure

The COVID-19 pandemic has and will continue to radically shift the workplace. An increasing percentage of the workforce desires flexible working options and, as such, firms are likely to require less office space going forward. Additionally, the economic downturn caused by the pandemic provides an opportunity for companies to secure favorable rent rates on new lease agreements. This project aims to evaluate and measure Company X’s potential cost savings from terminating current leases and downsizing office space in five selected cities. Along with city-specific real estate market research and forecasts, we employ a four-stage model of Company X’s real estate negotiation process to analyze whether existing lease agreements in these cities should be renewed or terminated.

ContributorsSaker, Logan (Co-author) / Ries, Sarah (Co-author) / Hegardt, Brandon (Co-author) / Patterson, Jack (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135930-Thumbnail Image.png
Description
The pharmaceutical industry is heavily regulated. This regulation results in a high number of recalls in this industry compared to other industries. The pharmaceutical industry is subject to high regulation because of the harmful effects pharmaceuticals can have on consumers. In this paper I examine the valuation effects that a

The pharmaceutical industry is heavily regulated. This regulation results in a high number of recalls in this industry compared to other industries. The pharmaceutical industry is subject to high regulation because of the harmful effects pharmaceuticals can have on consumers. In this paper I examine the valuation effects that a drug recall has on both the recalling firm and the recalling firm's rivals. I perform an event study analysis on the data. I show that there exists a statistically significant negative effect for a drug recall on the recalling firm's market value immediately surrounding the announcement. Additionally, there is a statistically significant positive effect for a drug recall on the recalling firm's rivals after the announcement.
ContributorsPaulos, Erica Marie (Author) / Hertzel, Michael (Thesis director) / Smith, Geoffrey (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
136255-Thumbnail Image.png
Description
Over the course of six months, we have worked in partnership with Arizona State University and a leading producer of semiconductor chips in the United States market (referred to as the "Company"), lending our skills in finance, statistics, model building, and external insight. We attempt to design models that hel

Over the course of six months, we have worked in partnership with Arizona State University and a leading producer of semiconductor chips in the United States market (referred to as the "Company"), lending our skills in finance, statistics, model building, and external insight. We attempt to design models that help predict how much time it takes to implement a cost-saving project. These projects had previously been considered only on the merit of cost savings, but with an added dimension of time, we hope to forecast time according to a number of variables. With such a forecast, we can then apply it to an expense project prioritization model which relates time and cost savings together, compares many different projects simultaneously, and returns a series of present value calculations over different ranges of time. The goal is twofold: assist with an accurate prediction of a project's time to implementation, and provide a basis to compare different projects based on their present values, ultimately helping to reduce the Company's manufacturing costs and improve gross margins. We believe this approach, and the research found toward this goal, is most valuable for the Company. Two coaches from the Company have provided assistance and clarified our questions when necessary throughout our research. In this paper, we begin by defining the problem, setting an objective, and establishing a checklist to monitor our progress. Next, our attention shifts to the data: making observations, trimming the dataset, framing and scoping the variables to be used for the analysis portion of the paper. Before creating a hypothesis, we perform a preliminary statistical analysis of certain individual variables to enrich our variable selection process. After the hypothesis, we run multiple linear regressions with project duration as the dependent variable. After regression analysis and a test for robustness, we shift our focus to an intuitive model based on rules of thumb. We relate these models to an expense project prioritization tool developed using Microsoft Excel software. Our deliverables to the Company come in the form of (1) a rules of thumb intuitive model and (2) an expense project prioritization tool.
ContributorsAl-Assi, Hashim (Co-author) / Chiang, Robert (Co-author) / Liu, Andrew (Co-author) / Ludwick, David (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor) / School of Accountancy (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / WPC Graduate Programs (Contributor)
Created2015-05
131737-Thumbnail Image.png
Description
This thesis discusses the case for Company X to improve its vast supply chain by implementing an artificial intelligence solution in the management of its spare parts inventory for manufacturing-related machinery. Currently, the company utilizes an inventory management system, based on previously set minimum and maximum thresholds, that doesn’t use

This thesis discusses the case for Company X to improve its vast supply chain by implementing an artificial intelligence solution in the management of its spare parts inventory for manufacturing-related machinery. Currently, the company utilizes an inventory management system, based on previously set minimum and maximum thresholds, that doesn’t use predictive analytics to stock required spares inventory. This results in unnecessary costs and redundancies within the supply chain resulting in the stockout of spare parts required to repair machinery. Our research aimed to quantify the cost of these stockouts, and ultimately propose a solution to mitigate them. Through discussion with Company X, our findings led us to recommend the use of Artificial Intelligence (A.I.) within the inventory management system to better predict when stockouts would occur. As a result of data availability, our analysis began on a smaller scale, considering only a single manufacturing site at Company X. Later, our findings were extrapolated across all manufacturing sites. The analysis includes the cost of stockouts, the capital that would be saved with A.I. implementation, costs to implement this new A.I. software, and the final net present value (NPV) that Company X could expect in 10 years and 25 years. The NPV calculations explored two scenarios, an external partnership and the purchase of a small private company, that lead to our final recommendations regarding the implementation of an A.I. software solution in Company X’s spares inventory management system. Following the analysis, a qualitative discussion of the potential risks and market opportunities associated with the explored implementation scenarios further guided the determination of our final recommendations.
ContributorsHolohan, Joseph Michael Houston (Co-author) / Shahriari, Rosie (Co-author) / Aun, Jose (Co-author) / Heineke, Christopher (Co-author) / Gurrola, Macario (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131623-Thumbnail Image.png
Description
Elon Musk is known for making controversial tweets, which often lead to lawsuits. Our thesis focuses on analyzing the effect that these individual tweets have on stock prices. Our hypothesis focuses on the idea that when Elon Musk makes a controversial tweet, the volatility of Tesla stock will increase, while

Elon Musk is known for making controversial tweets, which often lead to lawsuits. Our thesis focuses on analyzing the effect that these individual tweets have on stock prices. Our hypothesis focuses on the idea that when Elon Musk makes a controversial tweet, the volatility of Tesla stock will increase, while the price of Tesla stock will on average decrease. The thirteen tweets that we are examining are the tweets that we deemed to be most important, which are measured by the amount of press coverage that they have received. We also evaluated the effect that two different lawsuits that stemmed from Musk’s reckless tweets had on Tesla stock. After evaluating the effect that Elon Musk’s tweets had on the stock volume and price, we will then determine whether or not Elon Musk and other CEO’s alike should be able to tweet in a similar manner. In order to analyze stock movement, volume, and significance we imported statistical data from Yahoo Finance and Nasdaq into Excel. From there, We added charts to model the volatility and the direction of price data. Additionally, we created separate indexes to compare stock moves and test for abnormal returns. From these returns we were able to calculate the alpha and beta for Tesla, its peers and competitors. To analyze Musk’s tweets, we collected close to 7,000 tweets and ordered them chronologically in Excel. With the combination of the stock and tweet data, we were in an excellent spot to analyze the data and come to a conclusion.
ContributorsDe Roo, Gilles (Co-author) / Lueck, Elliott (Co-author) / Budolfson, Arthur (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132835-Thumbnail Image.png
Description
This paper classifies private equity groups (PEGs) seeking to engage in public to private transactions (PTPs) and determines (primarily through an examination of the implied merger arbitrage spread), whether certain reputational factors associated with the private equity industry affect a firm's ability to acquire a publicly-traded company. We use a

This paper classifies private equity groups (PEGs) seeking to engage in public to private transactions (PTPs) and determines (primarily through an examination of the implied merger arbitrage spread), whether certain reputational factors associated with the private equity industry affect a firm's ability to acquire a publicly-traded company. We use a sample of 1,027 US-based take private transactions announced between January 5, 2009 and August 2, 2018, where 333 transactions consist of private-equity led take-privates, to investigate how merger arbitrage spreads, offer premiums, and deal closure are impacted based on PEG- and PTP-specific input variables. We find that the merger arbitrage spread of PEG-backed deals are 2-3% wider than strategic deals, hostile deals have a greater merger arbitrage spread, larger bid premiums widen spreads and markets accurately identify deals that will close through a narrower spread. PEG deals offer lower premiums, as well as friendly deals and larger deals. Offer premiums are 8.2% larger among deals that eventually consummate. In a logistic regression, we identified that PEG deals are less likely to close than strategic deals, however friendly deals are much more likely to close and Mega Funds are more likely to consummate deals among their PEG peers. These findings support previous research on PTP deals. The insignificance of PEG-classified variables on arbitrage spreads and premiums suggest that investors do not differentiate PEG-backed deals by PEG due to most PEGs equal ability to raise competitive financing. However, Mega Funds are more likely to close deals, and thus, we identify that merger arbitrage spreads should be narrower among this PEG classification.
ContributorsSliwicki, Austin James (Co-author) / Schifman, Eli (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Economics (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134974-Thumbnail Image.png
Description
The goal of this thesis was to provide in depth research into the semiconductor wet-etch market and create a supplier analysis tool that would allow Company X to identify the best supplier partnerships. Several models were used to analyze the wet etch market including Porter's Five Forces and SWOT analyses.

The goal of this thesis was to provide in depth research into the semiconductor wet-etch market and create a supplier analysis tool that would allow Company X to identify the best supplier partnerships. Several models were used to analyze the wet etch market including Porter's Five Forces and SWOT analyses. These models were used to rate suppliers based on financial indicators, management history, market share, research and developments spend, and investment diversity. This research allowed for the removal of one of the four companies in question due to a discovered conflict of interest. Once the initial research was complete a dynamic excel model was created that would allow Company X to continually compare costs and factors of the supplier's products. Many cost factors were analyzed such as initial capital investment, power and chemical usage, warranty costs, and spares parts usage. Other factors that required comparison across suppliers included wafer throughput, number of layers the tool could process, the number of chambers the tool has, and the amount of space the tool requires. The demand needed for the tool was estimated by Company X in order to determine how each supplier's tool set would handle the required usage. The final feature that was added to the model was the ability to run a sensitivity analysis on each tool set. This allows Company X to quickly and accurately forecast how certain changes to costs or tool capacities would affect total cost of ownership. This could be heavily utilized during Company X's negotiations with suppliers. The initial research as well the model lead to the final recommendation of Supplier A as they had the most cost effective tool given the required demand. However, this recommendation is subject to change as demand fluctuates or if changes can be made during negotiations.
ContributorsSchmitt, Connor (Co-author) / Rickets, Dawson (Co-author) / Castiglione, Maia (Co-author) / Witten, Forrest (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Department of Economics (Contributor) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135450-Thumbnail Image.png
Description
As the IoT (Internet of Things) market continues to grow, Company X needs to find a way to penetrate the market and establish larger market share. The problem with Company X's current strategy and cost structure lies in the fact that the fastest growing portion of the IoT market is

As the IoT (Internet of Things) market continues to grow, Company X needs to find a way to penetrate the market and establish larger market share. The problem with Company X's current strategy and cost structure lies in the fact that the fastest growing portion of the IoT market is microcontrollers (MCUs). As Company X currently holds its focus in manufacturing microprocessors (MPUs), the current manufacturing strategy is not optimal for entering competitively into the MCU space. Within the MCU space, the companies that are competing the best do not utilize such high level manufacturing processes because these low cost products do not demand them. Given that the MCU market is largely untested by Company X and its products would need to be manufactured at increasingly lower costs, it runs the risk of over producing and holding obsolete inventory that is either scrapped or sold at or below cost. In order to eliminate that risk, we will explore alternative manufacturing strategies for Company X's MCU products specifically, which will allow for a more optimal cost structure and ultimately a more profitable Internet of Things Group (IoTG). The IoT MCU ecosystem does not require the high powered technology Company X is currently manufacturing and therefore, Company X loses large margins due to its unnecessary leading technology. Since cash is king, pursuing a fully external model for MCU design and manufacturing processes will generate the highest NPV for Company X. It also will increase Company X's market share, which is extremely important given that every tech company in the world is trying to get its hands into the IoT market. It is possible that in ten to thirty years down the road, Company X can manufacture enough units to keep its products in-house, but this is not feasible in the foreseeable future. For now, Company X should focus on the cost market of MCUs by driving its prices down while maintaining low costs due to the variables of COGS and R&D given in our fully external strategy.
ContributorsKadi, Bengimen (Co-author) / Peterson, Tyler (Co-author) / Langmack, Haley (Co-author) / Quintana, Vince (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / School of Accountancy (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

This paper serves as an analysis of the current operational conditions of a real-world company – referred to as “Company X” – with respect to the IC substrate industry. The cost of substrates, a crucial component in the production of Company X’s product, has recently diverged from Company X’s predictions

This paper serves as an analysis of the current operational conditions of a real-world company – referred to as “Company X” – with respect to the IC substrate industry. The cost of substrates, a crucial component in the production of Company X’s product, has recently diverged from Company X’s predictions and is contributing to declining profitability. This analysis aims to discover the underlying cause for price divergence and recommend potential resolutions to improve the forecast of substrate costs and profitability. The paper is organized as follows: Chapter 1 is an introduction to IC substrates and the industry as a whole, Chapter 2 is a breakdown of the specific factors responsible for substrate prices, and Chapter 3 delivers a final recommendation to Company X and concludes the paper.

ContributorsGuillaume, Riley (Author) / Aggarwal, Bianca (Co-author) / King, Camden (Co-author) / Fares, Ari (Co-author) / O'Loughlin, Connor (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor)
Created2023-05