Matching Items (3)
Filtering by

Clear all filters

150388-Thumbnail Image.png
Description
The main objective of this project was to create a framework for holistic ideation and research about the technical issues involved in creating a holistic approach. Towards that goal, we explored different components of ideation (both logical and intuitive), characterized ideation states, and found new ideation blocks with strategies used

The main objective of this project was to create a framework for holistic ideation and research about the technical issues involved in creating a holistic approach. Towards that goal, we explored different components of ideation (both logical and intuitive), characterized ideation states, and found new ideation blocks with strategies used to overcome them. One of the major contributions of this research is the method by which easy traversal between different ideation methods with different components were facilitated, to support both creativity and functional quality. Another important part of the framework is the sensing of ideation states (blocks/ unfettered ideation) and investigation of matching ideation strategies most likely to facilitate progress. Some of the ideation methods embedded in the initial holistic test bed are Physical effects catalog, working principles catalog, TRIZ, Bio-TRIZ and Artifacts catalog. Repositories were created for each of those. This framework will also be used as a research tool to collect large amount of data from designers about their choice of ideation strategies used, and their effectiveness. Effective documentation of design ideation paths is also facilitated using this holistic approach. A computer tool facilitating holistic ideation was developed. Case studies were run on different designers to document their ideation states and their choice of ideation strategies to come up with a good solution to solve the same design problem.
ContributorsMohan, Manikandan (Author) / Shah, Jami J. (Thesis advisor) / Huebner, Kenneth (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
157027-Thumbnail Image.png
Description
Advances in technology are fueling a movement toward ubiquity for beyond-the-desktop systems. Novel interaction modalities, such as free space or full body gestures are becoming more common, as demonstrated by the rise of systems such as the Microsoft Kinect. However, much of the interaction design research for such systems is

Advances in technology are fueling a movement toward ubiquity for beyond-the-desktop systems. Novel interaction modalities, such as free space or full body gestures are becoming more common, as demonstrated by the rise of systems such as the Microsoft Kinect. However, much of the interaction design research for such systems is still focused on desktop and touch interactions. Current thinking in free-space gestures are limited in capability and imagination and most gesture studies have not attempted to identify gestures appropriate for public walk-up-and-use applications. A walk-up-and-use display must be discoverable, such that first-time users can use the system without any training, flexible, and not fatiguing, especially in the case of longer-term interactions. One mechanism for defining gesture sets for walk-up-and-use interactions is a participatory design method called gesture elicitation. This method has been used to identify several user-generated gesture sets and shown that user-generated sets are preferred by users over those defined by system designers. However, for these studies to be successfully implemented in walk-up-and-use applications, there is a need to understand which components of these gestures are semantically meaningful (i.e. do users distinguish been using their left and right hand, or are those semantically the same thing?). Thus, defining a standardized gesture vocabulary for coding, characterizing, and evaluating gestures is critical. This dissertation presents three gesture elicitation studies for walk-up-and-use displays that employ a novel gesture elicitation methodology, alongside a novel coding scheme for gesture elicitation data that focuses on features most important to users’ mental models. Generalizable design principles, based on the three studies, are then derived and presented (e.g. changes in speed are meaningful for scroll actions in walk up and use displays but not for paging or selection). The major contributions of this work are: (1) an elicitation methodology that aids users in overcoming biases from existing interaction modalities; (2) a better understanding of the gestural features that matter, e.g. that capture the intent of the gestures; and (3) generalizable design principles for walk-up-and-use public displays.
ContributorsDanielescu, Lavinia Andreea (Author) / Walker, Erin A (Thesis advisor) / Burleson, Winslow (Thesis advisor) / VanLehn, Kurt (Committee member) / Kuznetsov, Anastasia (Committee member) / Maher, Mary Lou (Committee member) / Arizona State University (Publisher)
Created2019
155187-Thumbnail Image.png
Description
Desirable outcomes such as health and wellbeing are tightly linked to people’s behaviors, thus inspiring research on technologies that support productively changing those behaviors. Many behavior change technologies are designed by Human-Computer Interaction experts, but this approach makes it difficult to personalize support to each user’s unique goals and needs.

Desirable outcomes such as health and wellbeing are tightly linked to people’s behaviors, thus inspiring research on technologies that support productively changing those behaviors. Many behavior change technologies are designed by Human-Computer Interaction experts, but this approach makes it difficult to personalize support to each user’s unique goals and needs. As an alternative to the provision of expert-developed pre-fabricated behavior change solutions, the present study aims to empower users’ self-experimentation for behavior change. To this end, two levels of supports were explored. First, the provision of interactive digital materials to support users’ creation of behavioral plans was developed. In the initial step, a tutorial for self-experimentation for behavior change that was fully scripted with images in succession was created. The tutorial focuses on facilitating users’ learning and applying behavior change techniques. Second, users were equipped with a tool to support their implementation of context-aware just-in-time interventions. This tool enables prototyping of sensor-based responsive systems for home environments, integrating simple sensors (two-state magnetic sensors, etc.) and media event components (wireless sound, etc.).

To evaluate the effectiveness of these two approaches, a between-subject trial comparing the approaches to a sleep education control was conducted with 27 participants over 7 weeks. Although results did not reveal significant difference in sleep quality improvement between the conditions, trends indicating greater effectiveness in the two treatment groups were observed. Analysis of the plans participants created and their revision performance also indicated that the two treatment groups developed more specific and personalized plans compared with the control group.
ContributorsLee, Jisoo (Author) / Burleson, Winslow (Thesis advisor) / Hekler, Eric B. (Committee member) / Tinapple, David (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2016