Matching Items (11)
Filtering by

Clear all filters

152306-Thumbnail Image.png
Description
With the unveiling of the National Educational Technology Plan 2010, both preservice and inservice K12 teachers in the United States are expected to create a classroom environment that fosters the creation of digital citizens. However, it is unclear whether or not teacher education programs build this direct instruction, or any

With the unveiling of the National Educational Technology Plan 2010, both preservice and inservice K12 teachers in the United States are expected to create a classroom environment that fosters the creation of digital citizens. However, it is unclear whether or not teacher education programs build this direct instruction, or any other method of introducing students to the National Education Technology Standards (NETS), "a standard of excellence and best practices in learning, teaching and leading with technology in education," into their curriculum (International Society for Technology in Education, 2012). As with most teaching skills, the NETS and standards-based technology integration must be learned through exposure during the teacher preparation curriculum, either through modeling, direct instruction or assignments constructed to encourage standards-based technology integration. This study attempted to determine the extent to which preservice teachers at Arizona State University (ASU) enrolled in the Mary Lou Fulton Teachers College (MLFTC) can recognize the National Education Technology Standards (NETS) published by the International Society for Technology in Education (ISTE) and to what extent preservice teachers are exposed to technology integration in accordance with the NETS-T standards in their preparation curriculum in order to answer the questions of whether or not teacher education curriculum provides students an opportunity to learn and apply the NETS-T and if preservice teachers in core teacher preparation program courses that include objectives that integrate technology are more likely to be able to identify NETS-T standards than those in courses that do not include these elements In order to answer these questions, a mixed-method design study was utilized to gather data from an electronic survey, one-on-one interviews with students, faculty, and administrators, and document analysis of core course objectives and curriculum goals in the teacher certification program at ASU. The data was analyzed in order to determine the relationship between the preservice teachers, the NETS-T standards, and the role technology plays in the curriculum of the teacher preparation program. Results of the analysis indicate that preservice teachers have a minimum NETS-T awareness at the Literacy level, indicating that they can use technology skills when prompted and explore technology independently.
ContributorsLewis, Carrie L (Author) / Nelson, Brian (Thesis advisor) / Archambault, Leanna (Thesis advisor) / Savenye, Wilhelmenia (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2013
135574-Thumbnail Image.png
Description
The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the

The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the internet. As the server CPU industry expands and transitions to cloud computing, Company A's Data Center Group will need to expand their server CPU chip product mix to meet new demands of the cloud industry and to maintain high market share. Company A boasts leading performance with their x86 server chips and 95% market segment share. The cloud industry is dominated by seven companies Company A calls "The Super 7." These seven companies include: Amazon, Google, Microsoft, Facebook, Alibaba, Tencent, and Baidu. In the long run, the growing market share of the Super 7 could give them substantial buying power over Company A, which could lead to discounts and margin compression for Company A's main growth engine. Additionally, in the long-run, the substantial growth of the Super 7 could fuel the development of their own design teams and work towards making their own server chips internally, which would be detrimental to Company A's data center revenue. We first researched the server industry and key terminology relevant to our project. We narrowed our scope by focusing most on the cloud computing aspect of the server industry. We then researched what Company A has already been doing in the context of cloud computing and what they are currently doing to address the problem. Next, using our market analysis, we identified key areas we think Company A's data center group should focus on. Using the information available to us, we developed our strategies and recommendations that we think will help Company A's Data Center Group position themselves well in an extremely fast growing cloud computing industry.
ContributorsJurgenson, Alex (Co-author) / Nguyen, Duy (Co-author) / Kolder, Sean (Co-author) / Wang, Chenxi (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Department of Management (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135654-Thumbnail Image.png
Description
Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key

Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key issue for Company X is how to commercialize RealSense's depth recognition capabilities. This thesis addresses the problem by examining which markets to address and how to monetize this technology. The first part of the analysis identified potential markets for RealSense. This was achieved by evaluating current markets that could benefit from the camera's gesture recognition, 3D scanning, and depth sensing abilities. After identifying seven industries where RealSense could add value, a model of the available, addressable, and obtainable market sizes was developed for each segment. Key competitors and market dynamics were used to estimate the portion of the market that Company X could capture. These models provided a forecast of the discounted gross profits that could be earned over the next five years. These forecasted gross profits, combined with an examination of the competitive landscape and synergistic opportunities, resulted in the selection of the three segments thought to be most profitable to Company X. These segments are smart home, consumer drones, and automotive. The final part of the analysis investigated entrance strategies. Company X's competitive advantages in each space were found by examining the competition, both for the RealSense camera in general and other technologies specific to each industry. Finally, ideas about ways to monetize RealSense were developed by exploring various revenue models and channels.
ContributorsDunn, Nicole (Co-author) / Boudreau, Thomas (Co-author) / Kinzy, Chris (Co-author) / Radigan, Thomas (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / WPC Graduate Programs (Contributor) / Department of Psychology (Contributor) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Department of Economics (Contributor) / School of Mathematical and Statistical Science (Contributor) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133585-Thumbnail Image.png
Description
Company X has developed minicomputing products that can change the way people think about minicomputer. The Product A (PRODUCT A) and Product B are relatively new products on the market that have the ability to change the way some industries use technology and increase end-user convenience. The key issue for

Company X has developed minicomputing products that can change the way people think about minicomputer. The Product A (PRODUCT A) and Product B are relatively new products on the market that have the ability to change the way some industries use technology and increase end-user convenience. The key issue for Company X is finding targeted use cases to which Company X can market these products and increase sales. This thesis reports how our team has researched, calculated, and financially forecasted use cases for both the PRODUCT A and Product B. The Education and Healthcare industries were identified as those providing significant potential value propositions and an array of potential use cases from which we could choose to evaluate. Key competitors, market dynamics, and information obtained through interviews with a Product Line Analyst were used to size the available, obtainable, and attainable market numbers for Company X. The models built for this research provided insight into the PRODUCT A and Product B's potential growth in the education and healthcare industries. This led to the selection of education and healthcare use cases for the Product B and the PRODUCT A use cases for healthcare. This report concludes with recommendations for success in education and healthcare with the PRODUCT A and Product B.
ContributorsHoward, James (Co-author) / Kazmi, Abbas (Co-author) / Ralston, Nicholas (Co-author) / Salamatin, Mikkaela Alexis (Co-author) / Simonson, Mark (Thesis director) / Hopkins, David (Committee member) / W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The object of the present study is to examine methods in which the company can optimize their costs on third-party suppliers whom oversee other third-party trade labor. The third parties in scope of this study are suspected to overstaff their workforce, thus overcharging the company. We will introduce a complex

The object of the present study is to examine methods in which the company can optimize their costs on third-party suppliers whom oversee other third-party trade labor. The third parties in scope of this study are suspected to overstaff their workforce, thus overcharging the company. We will introduce a complex spreadsheet model that will propose a proper project staffing level based on key qualitative variables and statistics. Using the model outputs, the Thesis team proposes a headcount solution for the company and problem areas to focus on, going forward. All sources of information come from company proprietary and confidential documents.
ContributorsLoo, Andrew (Co-author) / Brennan, Michael (Co-author) / Sheiner, Alexander (Co-author) / Hertzel, Michael (Thesis director) / Simonson, Mark (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / WPC Graduate Programs (Contributor) / School of Accountancy (Contributor)
Created2014-05
134711-Thumbnail Image.png
Description
The purpose of this research project is to develop a recommendation for Company X on the strategies it should use to enter a new market. This was done through the compilation and interpretation of data from the company and the construction of a financial model capable of analyzing our different

The purpose of this research project is to develop a recommendation for Company X on the strategies it should use to enter a new market. This was done through the compilation and interpretation of data from the company and the construction of a financial model capable of analyzing our different proposed strategies. Company X is a leading producer of silicon chips which seeks to remain one of the leading forces in new technologies. Currently Company X wants to assess the value and risks associated with introducing a new packaging technology (FO-WLP) into their products either by developing the technology in-house or outsourcing production. The first portion of the research consisted mostly of gathering the necessary business acumen to be able to to fully understand our research findings. Market research was conducted to discover what competitors exist and what inputs should be included for the model with help from employees at Company X. The research then proceeded with the identification of three possible strategies and construction of financial models to analyze these options. Using the results from our analysis we were able to develop our recommendation for Company X and lay out the next steps which the Company needs to take before investing in the new technology.
ContributorsRubenzer, Jack (Co-author) / Galaviz, Roberto (Co-author) / Mariani, Stephanie (Co-author) / Mecinas, Freddy (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Finance (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133432-Thumbnail Image.png
Description
We gathered and analyzed key data from a wide-range of competitors in the foundry, fabless, and Integrated design manufacturing business. After detecting a downward trend in the return of invested capital (ROIC) and higher capital intensity of Company X, we searched for alternatives to turn this around. We conclude that,

We gathered and analyzed key data from a wide-range of competitors in the foundry, fabless, and Integrated design manufacturing business. After detecting a downward trend in the return of invested capital (ROIC) and higher capital intensity of Company X, we searched for alternatives to turn this around. We conclude that, to decrease the net PPE of Company X, a sale-leaseback transaction would help Company X reduce their balance sheet and provided financing to advance their manufacturing capabilities.
ContributorsBhat, Arjun Khandige (Co-author) / Brock, Ethan (Co-author) / Gamperl, Max (Co-author) / Gupta, Viraj (Co-author) / Macha, Sanketh (Co-author) / Simonson, Mark (Thesis director) / Duran, Juan Carlos (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134822-Thumbnail Image.png
Description
Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of

Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of smart cities. Company X is a leader in the semiconductor industry looking to grow its revenue in the IoT space. This thesis will address how Company X can deliver IoT solutions to government municipalities with the goal of simultaneously increasing revenue through value-added engagement and decreasing spending by more efficiently managing infrastructure upgrades.
ContributorsJiang, Yichun (Co-author) / Davidoff, Eric (Co-author) / Dawoud, Mariam (Co-author) / Rodenbaugh, Ryan (Co-author) / Sinclair, Brynn (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Psychology (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135037-Thumbnail Image.png
Description
Museum evaluation is an important process that aims to study an exhibit's effectiveness in engaging visitors and in teaching concepts. Imperatives and methods to strengthen museum evaluation have been suggested and implemented in the past, but ultimately faced several challenges including the collection of visitor feedback in an efficient, non-intrusive

Museum evaluation is an important process that aims to study an exhibit's effectiveness in engaging visitors and in teaching concepts. Imperatives and methods to strengthen museum evaluation have been suggested and implemented in the past, but ultimately faced several challenges including the collection of visitor feedback in an efficient, non-intrusive way. The Ask Dr. Discovery project seeks to address the challenge of conducting efficient, affordable, and large-scale science museum evaluation via an interactive app aimed at collecting direct visitor feedback through use of the app and through questionnaires that also collect demographics. This thesis investigates how the demographics of metro Phoenix science museum visitors as a whole compare to the Hispanic/Latino population of visitors, and makes use of visitor feedback from Ask Dr. Discovery to provide useful data for science museum evaluation. An analysis of responses revealed that the majority of the participants in the study (n=785) were White (Non-Hispanic) (65.59%), were 36-45 years old (36.18%) and hold a graduate degree (27.64%). Most Hispanic/Latino participants in the study were 26-35 years old (36.36%) and completed some college (28.67%). Most participants from both participant groups have never visited the museum before (32.99% of all participants; 33.57% of all Hispanics/Latinos). Further analysis suggest that museum visits may be independent of age and visitor group size. Visitor interest in science museum exhibits may be independent of their use of free time science-related activities. Data suggests that there was no real difference in exhibit interest across two different versions of the app ("modes"). Analysis of negative visitor feedback showed different question types, questions asked, and time spent on the app. Data log questions revealed the difference in time spent on the app and complexity of questions asked between adults and children, as well as the location of participants in the museum. There was no major correlation between mode type and number of questions asked, and length of use and number of questions asked.
ContributorsFernandez, Ivan (Author) / Bowman, Judd (Thesis director) / Bowman, Catherine (Committee member) / Nelson, Brian (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155689-Thumbnail Image.png
Description
Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool

Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool that connects paper-based assessments to digital space. I designed a classroom study and collected data from ASU computer science classes. I tracked and modeled students' reviewing and reflecting behaviors based on the use of WPGA. I analyzed students' reviewing efforts, in terms of frequency, timing, and the associations with their academic performances. Results showed that students put extra emphasis in reviewing prior to the exams and the efforts demonstrated the desire to review formal assessments regardless of if they were graded for academic performance or for attendance. In addition, all students paid more attention on reviewing quizzes and exams toward the end of semester.
ContributorsHuang, Po-Kai (Author) / Hsiao, I-Han (Thesis advisor) / Nelson, Brian (Committee member) / VanLehn, Kurt (Committee member) / Arizona State University (Publisher)
Created2017