Matching Items (14)
Filtering by

Clear all filters

152869-Thumbnail Image.png
Description
Preoperative team briefings have been suggested to be important for improving team performance in the operating room. Many high risk environments have accepted team briefings; however healthcare has been slower to follow. While applying briefings in the operating room has shown positive benefits including improved communication and perceptions of teamwork,

Preoperative team briefings have been suggested to be important for improving team performance in the operating room. Many high risk environments have accepted team briefings; however healthcare has been slower to follow. While applying briefings in the operating room has shown positive benefits including improved communication and perceptions of teamwork, most research has only focused on feasibility of implementation and not on understanding how the quality of briefings can impact subsequent surgical procedures. Thus, there are no formal protocols or methodologies that have been developed.

The goal of this study was to relate specific characteristics of team briefings back to objective measures of team performance. The study employed cognitive interviews, prospective observations, and principle component regression to characterize and model the relationship between team briefing characteristics and non-routine events (NREs) in gynecological surgery. Interviews were conducted with 13 team members representing each role on the surgical team and data were collected for 24 pre-operative team briefings and 45 subsequent surgical cases. The findings revealed that variations within the team briefing are associated with differences in team-related outcomes, namely NREs, during the subsequent surgical procedures. Synthesis of the data highlighted three important trends which include the need to promote team communication during the briefing, the importance of attendance by all surgical team members, and the value of holding a briefing prior to each surgical procedure. These findings have implications for development of formal briefing protocols.

Pre-operative team briefings are beneficial for team performance in the operating room. Future research will be needed to continue understanding this relationship between how briefings are conducted and team performance to establish more consistent approaches and as well as for the continuing assessment of team briefings and other similar team-related events in the operating room.
ContributorsHildebrand, Emily A (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Hallbeck, M. Susan (Committee member) / Bekki, Jennifer M (Committee member) / Blocker, Renaldo C (Committee member) / Arizona State University (Publisher)
Created2014
153223-Thumbnail Image.png
Description
Feature representations for raw data is one of the most important component in a machine learning system. Traditionally, features are \textit{hand crafted} by domain experts which can often be a time consuming process. Furthermore, they do not generalize well to unseen data and novel tasks. Recently, there have been many

Feature representations for raw data is one of the most important component in a machine learning system. Traditionally, features are \textit{hand crafted} by domain experts which can often be a time consuming process. Furthermore, they do not generalize well to unseen data and novel tasks. Recently, there have been many efforts to generate data-driven representations using clustering and sparse models. This dissertation focuses on building data-driven unsupervised models for analyzing raw data and developing efficient feature representations.

Simultaneous segmentation and feature extraction approaches for silicon-pores sensor data are considered. Aggregating data into a matrix and performing low rank and sparse matrix decompositions with additional smoothness constraints are proposed to solve this problem. Comparison of several variants of the approaches and results for signal de-noising and translocation/trapping event extraction are presented. Algorithms to improve transform-domain features for ion-channel time-series signals based on matrix completion are presented. The improved features achieve better performance in classification tasks and in reducing the false alarm rates when applied to analyte detection.

Developing representations for multimedia is an important and challenging problem with applications ranging from scene recognition, multi-media retrieval and personal life-logging systems to field robot navigation. In this dissertation, we present a new framework for feature extraction for challenging natural environment sounds. Proposed features outperform traditional spectral features on challenging environmental sound datasets. Several algorithms are proposed that perform supervised tasks such as recognition and tag annotation. Ensemble methods are proposed to improve the tag annotation process.

To facilitate the use of large datasets, fast implementations are developed for sparse coding, the key component in our algorithms. Several strategies to speed-up Orthogonal Matching Pursuit algorithm using CUDA kernel on a GPU are proposed. Implementations are also developed for a large scale image retrieval system. Image-based "exact search" and "visually similar search" using the image patch sparse codes are performed. Results demonstrate large speed-up over CPU implementations and good retrieval performance is also achieved.
ContributorsSattigeri, Prasanna S (Author) / Spanias, Andreas (Thesis advisor) / Thornton, Trevor (Committee member) / Goryll, Michael (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2014
156469-Thumbnail Image.png
Description
The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals

The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals who think for a living express feelings of stress about their ability to respond and fear missing critical tasks or information as they attempt to wade through all the electronic communication that floods their inboxes. Although many electronic communication tools compete for the attention of the contemporary knowledge worker, most professionals use an electronic personal information management (PIM) system, more commonly known as an e-mail application and often the ubiquitous Microsoft Outlook program. The aim of this research was to provide knowledge workers with solutions to manage the influx of electronic communication that arrives daily by studying the workers in their working environment. This dissertation represents a quest to understand the current strategies knowledge workers use to manage their e-mail, and if modification of e-mail management strategies can have an impact on productivity and stress levels for these professionals. Today’s knowledge workers rarely work entirely alone, justifying the importance of also exploring methods to improve electronic communications within teams.
ContributorsCounts, Virginia (Author) / Parrish, Kristen (Thesis advisor) / Allenby, Braden (Thesis advisor) / Landis, Amy (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2018
156622-Thumbnail Image.png
Description
Reasoning about the activities of cyber threat actors is critical to defend against cyber

attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult

to determine who the attacker is, what the desired goals are of the attacker, and how they will

carry out their attacks.

Reasoning about the activities of cyber threat actors is critical to defend against cyber

attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult

to determine who the attacker is, what the desired goals are of the attacker, and how they will

carry out their attacks. These three questions essentially entail understanding the attacker’s

use of deception, the capabilities available, and the intent of launching the attack. These

three issues are highly inter-related. If an adversary can hide their intent, they can better

deceive a defender. If an adversary’s capabilities are not well understood, then determining

what their goals are becomes difficult as the defender is uncertain if they have the necessary

tools to accomplish them. However, the understanding of these aspects are also mutually

supportive. If we have a clear picture of capabilities, intent can better be deciphered. If we

understand intent and capabilities, a defender may be able to see through deception schemes.

In this dissertation, I present three pieces of work to tackle these questions to obtain

a better understanding of cyber threats. First, we introduce a new reasoning framework

to address deception. We evaluate the framework by building a dataset from DEFCON

capture-the-flag exercise to identify the person or group responsible for a cyber attack.

We demonstrate that the framework not only handles cases of deception but also provides

transparent decision making in identifying the threat actor. The second task uses a cognitive

learning model to determine the intent – goals of the threat actor on the target system.

The third task looks at understanding the capabilities of threat actors to target systems by

identifying at-risk systems from hacker discussions on darkweb websites. To achieve this

task we gather discussions from more than 300 darkweb websites relating to malicious

hacking.
ContributorsNunes, Eric (Author) / Shakarian, Paulo (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2018
155511-Thumbnail Image.png
Description
The Internet is a major source of online news content. Online news is a form of large-scale narrative text with rich, complex contents that embed deep meanings (facts, strategic communication frames, and biases) for shaping and transitioning standards, values, attitudes, and beliefs of the masses. Currently, this body of narrative

The Internet is a major source of online news content. Online news is a form of large-scale narrative text with rich, complex contents that embed deep meanings (facts, strategic communication frames, and biases) for shaping and transitioning standards, values, attitudes, and beliefs of the masses. Currently, this body of narrative text remains untapped due—in large part—to human limitations. The human ability to comprehend rich text and extract hidden meanings is far superior to known computational algorithms but remains unscalable. In this research, computational treatment is given to online news framing for exposing a deeper level of expressivity coined “double subjectivity” as characterized by its cumulative amplification effects. A visual language is offered for extracting spatial and temporal dynamics of double subjectivity that may give insight into social influence about critical issues, such as environmental, economic, or political discourse. This research offers benefits of 1) scalability for processing hidden meanings in big data and 2) visibility of the entire network dynamics over time and space to give users insight into the current status and future trends of mass communication.
ContributorsCheeks, Loretta H. (Author) / Gaffar, Ashraf (Thesis advisor) / Wald, Dara M (Committee member) / Ben Amor, Hani (Committee member) / Doupe, Adam (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2017
155902-Thumbnail Image.png
Description
We experience spatial separation and temporal asynchrony between visual and

haptic information in many virtual-reality, augmented-reality, or teleoperation systems.

Three studies were conducted to examine the spatial and temporal characteristic of

multisensory integration. Participants interacted with virtual springs using both visual and

haptic senses, and their perception of stiffness and ability to differentiate stiffness

We experience spatial separation and temporal asynchrony between visual and

haptic information in many virtual-reality, augmented-reality, or teleoperation systems.

Three studies were conducted to examine the spatial and temporal characteristic of

multisensory integration. Participants interacted with virtual springs using both visual and

haptic senses, and their perception of stiffness and ability to differentiate stiffness were

measured. The results revealed that a constant visual delay increased the perceived stiffness,

while a variable visual delay made participants depend more on the haptic sensations in

stiffness perception. We also found that participants judged stiffness stiffer when they

interact with virtual springs at faster speeds, and interaction speed was positively correlated

with stiffness overestimation. In addition, it has been found that participants could learn an

association between visual and haptic inputs despite the fact that they were spatially

separated, resulting in the improvement of typing performance. These results show the

limitations of Maximum-Likelihood Estimation model, suggesting that a Bayesian

inference model should be used.
ContributorsSim, Sung Hun (Author) / Wu, Bing (Thesis advisor) / Cooke, Nancy J. (Committee member) / Gray, Robert (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2017
155568-Thumbnail Image.png
Description
This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that

This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that adding a synthetic agent as a team member may lead teams to demonstrate different coordination patterns resulting in differences in team cognition and ultimately team effectiveness. The theory of Interactive Team Cognition (ITC) emphasizes the importance of team interaction behaviors over the collection of individual knowledge. In this dissertation, Nonlinear Dynamical Methods (NDMs) were applied to capture characteristics of overall team coordination and communication behaviors. The findings supported the hypothesis that coordination stability is related to team performance in a nonlinear manner with optimal performance associated with moderate stability coupled with flexibility. Thus, we need to build mechanisms in HATs to demonstrate moderately stable and flexible coordination behavior to achieve team-level goals under routine and novel task conditions.
ContributorsDemir, Mustafa, Ph.D (Author) / Cooke, Nancy J. (Thesis advisor) / Bekki, Jennifer (Committee member) / Amazeen, Polemnia G (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
155540-Thumbnail Image.png
Description
Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and

Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and image scenes.





Solder ball height and substrate coplanarity inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height and substrate coplanarity inspection tools are expensive and slow, which makes them difficult to use in a real-time manufacturing setting. In this dissertation, an automatic, stereo vision based, in-line ball height and coplanarity inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement. The imaging setup and calibration, ball height estimation and substrate coplanarity calculation are presented with novel stereo vision methods. The results of the proposed method are evaluated in a measurement capability analysis (MCA) procedure and compared with the ground-truth obtained by an existing laser scanning tool and an existing confocal inspection tool. The proposed system outperforms existing inspection tools in terms of accuracy and stability.



In a rectified stereo vision system, stereo matching methods can be categorized into global methods and local methods. Local stereo methods are more suitable for real-time processing purposes with competitive accuracy as compared with global methods. This work proposes a stereo matching method based on sparse locally adaptive cost aggregation. In order to reduce outlier disparity values that correspond to mis-matches, a novel sparse disparity subset selection method is proposed by assigning a significance status to candidate disparity values, and selecting the significant disparity values adaptively. An adaptive guided filtering method using the disparity subset for refined cost aggregation and disparity calculation is demonstrated. The proposed stereo matching algorithm is tested on the Middlebury and the KITTI stereo evaluation benchmark images. A performance analysis of the proposed method in terms of the I0 norm of the disparity subset is presented to demonstrate the achieved efficiency and accuracy.
ContributorsLi, Jinjin (Author) / Karam, Lina (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Patel, Nital (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2017
149644-Thumbnail Image.png
Description
Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the

Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the present study investigated several factors that affect implicit learning and the development of intuitive decision making in a simulated real-world environment: (1) simple versus complex situational patterns; (2) the diversity of the patterns to which an individual is exposed; (3) the underlying mechanisms. The results showed that simple patterns led to higher levels of implicit learning and intuitive decision-making accuracy than complex patterns; increased diversity enhanced implicit learning and intuitive decision-making accuracy; and an embodied mechanism, labeling, contributes to the development of intuitive decision making in a simulated real-world environment. The results suggest that simulated real-world environments can provide the basis for training intuitive decision making, that diversity is influential in the process of training intuitive decision making, and that labeling contributes to the development of intuitive decision making. These results are interpreted in the context of applied situations such as military applications involving remotely piloted aircraft.
ContributorsCovas-Smith, Christine Marie (Author) / Cooke, Nancy J. (Thesis advisor) / Patterson, Robert (Committee member) / Glenberg, Arthur (Committee member) / Homa, Donald (Committee member) / Arizona State University (Publisher)
Created2011
189223-Thumbnail Image.png
Description
What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for

What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for HARTs. Team resilience here is defined as the ability of a team to reorganize team processes to rebound or morph to overcome an unforeseen challenge. A distinction from the individual, group, or organizational aspects of resilience for teams is how team resilience trades off with team interdependent capacity. The following study collected data from 28 teams comprised of two human participants (recruited from a university populace) and a synthetic teammate (played by an experienced experimenter). Each team completed a series of six reconnaissance missions presented to them in a Minecraft world. The research aim was to identify how to better integrate synthetic teammates for high-risk, high-stress dynamic operations to boost HART performance and HART resilience. All team communications were orally over Zoom. The primary manipulation was the communication given by the synthetic teammate (between-subjects, Task or Task+): Task only communicated the essentials, and Task+ offered clear and concise communications of its own capabilities and limitations. Performance and resilience were measured using a primary mission task score (based upon how many tasks teams completed), time-based measures (such as how long it took to recognize a problem or reorder team processes), and a subjective team resilience score (calculated from participant responses to a survey prompt). The research findings suggest the clear and concise reminders from Task+ enhanced HART performance and HART resilience during high-stress missions in which the teams were challenged by novel events. An exploratory study regarding what personalities may correlate with these improved performance metrics indicated that the Big Five trait taxonomies of extraversion and conscientiousness were positively correlated, whereas neuroticism was negatively correlated with higher HART performance and HART resilience. Future integration of synthetic teammates must consider the types of communications that will be offered to maximize HART performance and HART resilience.
ContributorsGraham, Hudson D. (Author) / Cooke, Nancy J. (Thesis advisor) / Gray, Robert (Committee member) / Holder, Eric (Committee member) / Arizona State University (Publisher)
Created2023