Matching Items (21)
Filtering by

Clear all filters

150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
152216-Thumbnail Image.png
Description
This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is

This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.
ContributorsBush, Craig R (Author) / Ayyanar, Raja (Thesis advisor) / Karam, Lina (Committee member) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2013
152202-Thumbnail Image.png
Description
This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission

This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.
ContributorsRuggiero, John (Author) / Heydt, Gerald T (Thesis advisor) / Datta, Rajib (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2013
151540-Thumbnail Image.png
Description
The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to be an effective solution to promote energy efficiency. In the urban en-vironment, the electricity, water and natural gas distribution networks are becoming in-creasingly interconnected with

The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to be an effective solution to promote energy efficiency. In the urban en-vironment, the electricity, water and natural gas distribution networks are becoming in-creasingly interconnected with the growing penetration of the CHP-based DG. Subse-quently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and sit-ing for a larger test bed with the given information of energy infrastructures. In this con-text, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The pro-posed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation per-formances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electrici-ty, gas, and water system models were developed individually and coupled by the devel-oped CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.
ContributorsZhang, Xianjun (Author) / Karady, George G. (Thesis advisor) / Ariaratnam, Samuel T. (Committee member) / Holbert, Keith E. (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
151546-Thumbnail Image.png
Description
Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types

Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types of services have been analyzed considering current market pricing of Lithium-ion batteries and power conditioning equipment. Energy Storage Valuation Tool 3.0 (Beta) has been used to exclusively determine the value of energy storage in the services analyzed. The results indicate that on the residential level, Lithium-ion battery energy storage may not be a cost beneficial option for retail tariff management or demand charge management as only 20-30% of the initial investment is recovered at the end of 15 year plant life. SRP's two retail Time-of-Use price plans E-21 and E-26 were analyzed in respect of their ability to increase returns from storage compared to those with flat pricing. It was observed that without a coupled PV component, E-21 was more suitable for customer premises energy storage, however, its revenue stream reduces with addition to PV. On the grid scale, however, with carefully chosen service hierarchy such as distribution investment deferral, spinning or balancing reserve support, the initial investment can be recovered to an extent of about 50-70%. The study done here is specific to Salt River Project inputs and data. Results for all the services analyzed are highly location specific and are only indicative of the overall viability and returns from them.
ContributorsNadkarni, Aditya (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
152197-Thumbnail Image.png
Description
Microelectronic industry is continuously moving in a trend requiring smaller and smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current

Microelectronic industry is continuously moving in a trend requiring smaller and smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current density is of great concern affecting the reliability of the entire microelectronics systems. This paper reviews electromigration in Pb- free solders, focusing specifically on Sn0.7wt.% Cu solder joints. Effect of texture, grain orientation, and grain-boundary misorientation angle on electromigration and intermetallic compound (IMC) formation is studied through EBSD analysis performed on actual C4 bumps.
ContributorsLara, Leticia (Author) / Tasooji, Amaneh (Thesis advisor) / Lee, Kyuoh (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
154051-Thumbnail Image.png
Description
The demand for cleaner energy technology is increasing very rapidly. Hence it is

important to increase the eciency and reliability of this emerging clean energy technologies.

This thesis focuses on modeling and reliability of solar micro inverters. In

order to make photovoltaics (PV) cost competitive with traditional energy sources,

the economies of scale have

The demand for cleaner energy technology is increasing very rapidly. Hence it is

important to increase the eciency and reliability of this emerging clean energy technologies.

This thesis focuses on modeling and reliability of solar micro inverters. In

order to make photovoltaics (PV) cost competitive with traditional energy sources,

the economies of scale have been guiding inverter design in two directions: large,

centralized, utility-scale (500 kW) inverters vs. small, modular, module level (300

W) power electronics (MLPE). MLPE, such as microinverters and DC power optimizers,

oer advantages in safety, system operations and maintenance, energy yield,

and component lifetime due to their smaller size, lower power handling requirements,

and module-level power point tracking and monitoring capability [1]. However, they

suer from two main disadvantages: rst, depending on array topology (especially

the proximity to the PV module), they can be subjected to more extreme environments

(i.e. temperature cycling) during the day, resulting in a negative impact to

reliability; second, since solar installations can have tens of thousands to millions of

modules (and as many MLPE units), it may be dicult or impossible to track and

repair units as they go out of service. Therefore identifying the weak links in this

system is of critical importance to develop more reliable micro inverters.

While an overwhelming majority of time and research has focused on PV module

eciency and reliability, these issues have been largely ignored for the balance

of system components. As a relatively nascent industry, the PV power electronics

industry does not have the extensive, standardized reliability design and testing procedures

that exist in the module industry or other more mature power electronics

industries (e.g. automotive). To do so, the critical components which are at risk and

their impact on the system performance has to be studied. This thesis identies and

addresses some of the issues related to reliability of solar micro inverters.

This thesis presents detailed discussions on various components of solar micro inverter

and their design. A micro inverter with very similar electrical specications in

comparison with commercial micro inverter is modeled in detail and veried. Components

in various stages of micro inverter are listed and their typical failure mechanisms

are reviewed. A detailed FMEA is conducted for a typical micro inverter to identify

the weak links of the system. Based on the S, O and D metrics, risk priority number

(RPN) is calculated to list the critical at-risk components. Degradation of DC bus

capacitor is identied as one the failure mechanism and the degradation model is built

to study its eect on the system performance. The system is tested for surge immunity

using standard ring and combinational surge waveforms as per IEEE 62.41 and

IEC 61000-4-5 standards. All the simulation presented in this thesis is performed

using PLECS simulation software.
ContributorsManchanahalli Ranganatha, Arkanatha Sastry (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2015
154793-Thumbnail Image.png
Description
Overhead high voltage transmission lines are widely used around the world to deliver power to customers because of their low losses and high transmission capability. Well-coordinated insulation systems are capable of withstanding lightning and switching surge voltages. However, flashover is a serious issue to insulation systems, especially if the insulator

Overhead high voltage transmission lines are widely used around the world to deliver power to customers because of their low losses and high transmission capability. Well-coordinated insulation systems are capable of withstanding lightning and switching surge voltages. However, flashover is a serious issue to insulation systems, especially if the insulator is covered by a pollution layer. Many experiments in the laboratory have been conducted to investigate this issue. Since most experiments are time-consuming and costly, good mathematical models could contribute to predicting the insulator flashover performance as well as guide the experiments. This dissertation proposes a new statistical model to calculate the flashover probability of insulators under different supply voltages and contamination levels. An insulator model with water particles in the air is simulated to analyze the effects of rain and mist on flashover performance in reality. Additionally, insulator radius and number of sheds affect insulator surface resistivity and leakage distance. These two factors are studied to improve the efficiency of insulator design. This dissertation also discusses the impact of insulator surface hydrophobicity on flashover voltage.

Because arc propagation is a stochastic process, an arc could travel on different paths based on the electric field distribution. Some arc paths jump between insulator sheds instead of travelling along the insulator surfaces. The arc jumping could shorten the leakage distance and intensify the electric field. Therefore, the probabilities of arc jumping at different locations of sheds are also calculated in this dissertation.

The new simulation model is based on numerical electric field calculation and random walk theory. The electric field is calculated by the variable-grid finite difference method. The random walk theory from the Monte Carlo Method is utilized to describe the random propagation process of arc growth. This model will permit insulator engineers to design the reasonable geometry of insulators, to reduce the flashover phenomena under a wide range of operating conditions.
ContributorsHe, Jiahong (Author) / Gorur, Ravi (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2016
153938-Thumbnail Image.png
Description
Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission system and more are planned to be added. Addition of

Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission system and more are planned to be added. Addition of these shunt capacitors may create resonance conditions in response to harmonic voltages and currents. Such resonance, if it occurs, may create problematic issues in the system. It is main objective of this thesis to identify potential problematic effects that could occur after placing new shunt capacitors at selected buses in the Arizona network. Part of the objective is to create a systematic plan for avoidance of resonance issues.

For this study, a method of capacitance scan is proposed. The bus admittance matrix is used as a model of the networked transmission system. The calculations on the admittance matrix were done using Matlab. The test bed is the actual transmission system in Arizona; however, for proprietary reasons, bus names are masked in the thesis copy in-tended for the public domain. The admittance matrix was obtained from data using the PowerWorld Simulator after equivalencing the 2016 summer peak load (planning case). The full Western Electricity Coordinating Council (WECC) system data were used. The equivalencing procedure retains only the Arizona portion of the WECC.

The capacitor scan results for single capacitor placement and multiple capacitor placement cases are presented. Problematic cases are identified in the form of ‘forbidden response. The harmonic voltage impact of known sources of harmonics, mainly large scale HVDC sources, is also presented.

Specific key results for the study indicated include:

• The forbidden zones obtained as per the IEEE 519 standard indicates the bus 10 to be the most problematic bus.

• The forbidden zones also indicate that switching values for the switched shunt capacitor (if used) at bus 3 should be should be considered carefully to avoid resonance condition from existing.

• The highest sensitivity of 0.0033 per unit for HVDC sources of harmonics was observed at bus 7 when all the HVDC sources were active at the same time.
ContributorsPatil, Hardik U (Author) / Heydt, Gerald T (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
153878-Thumbnail Image.png
Description
The utilization of power cables is increasing with the development of renewable energy and the maintenance replacement of old overhead power lines. Therefore, effective monitoring and accurate fault location for power cables are very important for the sake of a stable power supply.

The recent technologies for power cable diagnosis

The utilization of power cables is increasing with the development of renewable energy and the maintenance replacement of old overhead power lines. Therefore, effective monitoring and accurate fault location for power cables are very important for the sake of a stable power supply.

The recent technologies for power cable diagnosis and temperature monitoring system are described including their intrinsic limitations for cable health assessment. Power cable fault location methods are reviewed with two main categories: off-line and on-line data based methods.

As a diagnostic and fault location approach, a new passive methodology is introduced. This methodology is based on analyzing the resonant frequencies of the transfer function between the input and output of the power cable system. The equivalent pi model is applied to the resonant frequency calculation for the selected underground power cable transmission system.

The characteristics of the resonant frequencies are studied by analytical derivations and PSCAD simulations. It is found that the variation of load magnitudes and change of positive power factors (i.e., inductive loads) do not affect resonant frequencies significantly, but there is considerable movement of resonant frequencies under change of negative power factors (i.e., capacitive loads).

Power cable fault conditions introduce new resonant frequencies in accordance with fault positions. Similar behaviors of the resonant frequencies are shown in a transformer (TR) connected power cable system with frequency shifts caused by the TR impedance.

The resonant frequencies can be extracted by frequency analysis of power signals and the inherent noise in these signals plays a key role to measure the resonant frequencies. Window functions provide an effective tool for improving resonant frequency discernment. The frequency analysis is implemented on noise laden PSCAD simulation signals and it reveals identical resonant frequency characteristics with theoretical studies.

Finally, the noise levels of real voltage and current signals, which are acquired from an operating power plant, are estimated and the resonant frequencies are extracted by applying window functions, and these results prove that the resonant frequency can be used as an assessment for the internal changes in power cable parameters such as defects and faults.
ContributorsKim, Youngdeug (Author) / Holbert, Keith Edwin (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2015