Description
Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission

Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission system and more are planned to be added. Addition of these shunt capacitors may create resonance conditions in response to harmonic voltages and currents. Such resonance, if it occurs, may create problematic issues in the system. It is main objective of this thesis to identify potential problematic effects that could occur after placing new shunt capacitors at selected buses in the Arizona network. Part of the objective is to create a systematic plan for avoidance of resonance issues.

For this study, a method of capacitance scan is proposed. The bus admittance matrix is used as a model of the networked transmission system. The calculations on the admittance matrix were done using Matlab. The test bed is the actual transmission system in Arizona; however, for proprietary reasons, bus names are masked in the thesis copy in-tended for the public domain. The admittance matrix was obtained from data using the PowerWorld Simulator after equivalencing the 2016 summer peak load (planning case). The full Western Electricity Coordinating Council (WECC) system data were used. The equivalencing procedure retains only the Arizona portion of the WECC.

The capacitor scan results for single capacitor placement and multiple capacitor placement cases are presented. Problematic cases are identified in the form of ‘forbidden response. The harmonic voltage impact of known sources of harmonics, mainly large scale HVDC sources, is also presented.

Specific key results for the study indicated include:

• The forbidden zones obtained as per the IEEE 519 standard indicates the bus 10 to be the most problematic bus.

• The forbidden zones also indicate that switching values for the switched shunt capacitor (if used) at bus 3 should be should be considered carefully to avoid resonance condition from existing.

• The highest sensitivity of 0.0033 per unit for HVDC sources of harmonics was observed at bus 7 when all the HVDC sources were active at the same time.
Reuse Permissions
  • Downloads
    pdf (2.4 MB)

    Details

    Title
    • Harmonic resonance in power transmission systems due to the addition of shunt capacitors
    Contributors
    Date Created
    2015
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2015
      Note type
      thesis
    • Includes bibliographical references (pages 77-81)
      Note type
      bibliography
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Hardik U. Patil

    Machine-readable links