Matching Items (5)
Filtering by

Clear all filters

136768-Thumbnail Image.png
Description
Influenza has shown its potential to affect and even kill millions of people within an extremely short time frame, yet studies and surveys show that the general public is not well educated about the facts about influenza, including prevention and treatment. For this reason, public perception of influenza is extremely

Influenza has shown its potential to affect and even kill millions of people within an extremely short time frame, yet studies and surveys show that the general public is not well educated about the facts about influenza, including prevention and treatment. For this reason, public perception of influenza is extremely skewed, with people generally not taking the disease as seriously as they should given its severity. To investigate the inconsistencies between action and awareness of best available knowledge regarding influenza, this study conducted literature review and a survey of university students about their knowledge, perceptions, and action taken in relationship to influenza. Due to their dense living quarters, constant daily interactions, and mindset that they are "immune" to fairly common diseases like influenza, university students are a representative sample of urban populations. According to the World Health Organization (WHO), 54% of the world's population lived in cities as of 2014 (Urban population growth). Between 2015 and 2020, the global urban population is expected to grow 1.84% per year, 1.63% between 2020 and 2025, and 1.44% between 2025 and 2030 (Urban population growth). Similar projections estimate that by 2017, an overwhelming majority of the world's population, even in less developed countries, will be living in cities (Urban population growth). Results of this study suggest possible reasons for the large gap between best available knowledge and the perceptions and actions of individuals on the other hand. This may lead to better-oriented influenza education initiatives, more effective prevention and treatment plans, and generally raise excitement and awareness surrounding public health and scientific communication.
ContributorsGur-Arie, Rachel Ellen Haviva (Author) / Maienschein, Jane (Thesis director) / Laubichler, Manfred (Committee member) / Creath, Richard (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12
135667-Thumbnail Image.png
Description
This work challenges the conventional perceptions surrounding the utility and use of the CMS Open Payments data. I suggest unconsidered methodologies for extracting meaningful information from these data following an exploratory analysis of the 2014 research dataset that, in turn, enhance its value as a public good. This dataset is

This work challenges the conventional perceptions surrounding the utility and use of the CMS Open Payments data. I suggest unconsidered methodologies for extracting meaningful information from these data following an exploratory analysis of the 2014 research dataset that, in turn, enhance its value as a public good. This dataset is favored for analysis over the general payments dataset as it is believed that generating transparency in the pharmaceutical and medical device R&D process would be of the greatest benefit to public health. The research dataset has been largely ignored by analysts and this may be one of the few works that have accomplished a comprehensive exploratory analysis of these data. If we are to extract valuable information from this dataset, we must alter both our approach as well as focus our attention towards re-conceptualizing the questions that we ask. Adopting the theoretical framework of complex systems serves as the foundation for our interpretation of the research dataset. This framework, in conjunction with a methodological toolkit for network analysis, may set a precedent for the development of alternative perspectives that allow for novel interpretations of the information that big data attempts to convey. By thus proposing a novel perspective in interpreting the information that this dataset contains, it is possible to gain insight into the emergent dynamics of the collaborative relationships that are established during the pharmaceutical and medical device R&D process.
Created2016-05
Description

Synthetic plastics are ubiquitously used in a broad range of applications, including food and drink packaging. Plastics often contain chemical additives, including bisphenols, phthalates, and terephthalic acid, which can degrade under thermal stress. The environmental presence of these chemicals is cause for public concern, especially in consumer products that utilize

Synthetic plastics are ubiquitously used in a broad range of applications, including food and drink packaging. Plastics often contain chemical additives, including bisphenols, phthalates, and terephthalic acid, which can degrade under thermal stress. The environmental presence of these chemicals is cause for public concern, especially in consumer products that utilize plastic packaging, as many have been identified as endocrine disruptors. This study sought to determine exposure to phthalates, bisphenols, and terephthalic acid by quantifying a broad spectrum of these analytes within three bottled water brands at varying temperature exposure levels using the combination of solid phase extraction followed by isotope dilution liquid chromatography-tandem mass spectrometry. Monobenzyl phthalate was detected in two of the three brands after bottles were heated to ~100 °C, ranging from 98 – 107 ng/L, and bisphenol A was detected in one brand at ~100 °C at an average concentration of 748 ± 36 ng/L. Subsequent mass loading calculations demonstrated that bioaccumulation of BPA from Brand C after high levels of temperature exposure well exceeded the tolerable daily intake (TDI). Findings in this study indicate that consumers should not be expected to incur harmful exposures to the target compounds under normal conditions as analytes were not measured in water bottle samples at 25 °C or 60 °C. Further studies should explore a more nuisance approach to heating over long durations, including that of ultraviolet exposure.

ContributorsZevitz, Jacob (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2022-12
156994-Thumbnail Image.png
Description
This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment

This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment microcosms operated as continuous-flow columns are preferable to batch bottles when seeking to emulate with high fidelity the complex conditions prevailing in the subsurface in contaminated aquifers (Chapter 2). Compared to monitoring at the field-scale, use of column microcosms also showed (i) improved chemical speciation, and (ii) qualitative predictability of field parameters (Chapter 3). Monitoring of glucocorticoid hormones in wastewater of a university campus showed (i) elevated stress levels particularly at the start of the semester, (ii) on weekdays relative to weekend days (p = 0.05) (161 ± 42 μg d-1 per person, 122 ± 54 μg d-1 per person; p ≤ 0.05), and (iii) a positive association between levels of stress hormones and nicotine (rs: 0.49) and caffeine (0.63) consumption in this student population (Chapter 4). Also, (i) alcohol consumption determined by WBE was in line with literature estimates for this young sub-population (11.3 ± 7.5 g d-1 per person vs. 10.1 ± 0.8 g d-1 per person), whereas caffeine and nicotine uses were below (114 ± 49 g d-1 per person, 178 ± 19 g d-1 per person; 627 ± 219 g d-1 per person, 927 ± 243 g d-1 per person). The introduction of a novel continuous in situ sampler to WBE brought noted benefits relative to traditional time-integrated sampling, including (i) a higher sample coverage (93% vs. 3%), (ii) an ability to captured short-term analyte pulses (e.g., heroin, fentanyl, norbuprenorphine, and methadone), and (iii) an overall higher mass capture for drugs of abuse like morphine, fentanyl, methamphetamine, amphetamine, and the opioid antagonist metabolite norbuprenorphine (p ≤ 0.01). Methods and devices developed in this work are poised to find applications in the remediation sector and in human health assessments.
ContributorsDriver, Erin Michelle (Author) / Halden, Rolf (Thesis advisor) / Conroy-Ben, Otakuye (Committee member) / Kavazanjian, Edward (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2018
127819-Thumbnail Image.png
Description

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center.

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center. The Future of Wastewater Sensing workshop explores how technologies for studying, monitoring, and mining wastewater and sewage sludge might develop in the future, and what consequences may ensue for public health, law enforcement, private industry, regulations and society at large. The workshop pays particular attention to how wastewater sensing (and accompanying research, technologies, and applications) can be innovated, regulated, and used to maximize societal benefit and minimize the risk of adverse outcomes, when addressing critical social and environmental challenges.

ContributorsWithycombe Keeler, Lauren (Researcher) / Halden, Rolf (Researcher) / Selin, Cynthia (Researcher) / Center for Nanotechnology in Society (Contributor)
Created2015-11-01