Matching Items (4)
Filtering by

Clear all filters

133837-Thumbnail Image.png
Description
Autonomous vehicles (AV) are capable of producing massive amounts of real time and precise data. This data has the ability to present new business possibilities across a vast amount of markets. These possibilities range from simple applications to unprecedented use cases. With this in mind, the three main objectives we

Autonomous vehicles (AV) are capable of producing massive amounts of real time and precise data. This data has the ability to present new business possibilities across a vast amount of markets. These possibilities range from simple applications to unprecedented use cases. With this in mind, the three main objectives we sought to accomplish in our thesis were to: Understand if there is monetization potential in autonomous vehicle data Create a financial model of what detailing the viability of AV data monetization Discover how a particular company (Company X) can take advantage of this opportunity, and outline how that company might access this autonomous vehicle data. First, in order to brainstorm how this data could be monetized, we generated potential use cases, defined probable customers of these use cases, and how the data could generate value to customers as a means to understand what the "price" of autonomous vehicle data might be. While we came up with an extensive list of potential data monetization use cases, we evaluated our list of use cases against six criteria to narrow our focus into the following five: Government, Insurance Companies, Mapping, Marketing purposes, and Freight. Based on our research, we decided to move forward with the insurance industry as a proof of concept for autonomous vehicle data monetization. Based on our modeling, we concluded there is a significant market for autonomous vehicle data monetization moving forward. Data accessibility is a key driver in how profitable a particular company and their competitors can be in this space. In order to effectively monetize this data, it would first be important to understand the method by which a company obtains access to the data in the first place. Ultimately, based on our analysis, Company X has positioned itself well to take advantage of the new trends in autonomous vehicle technology. With more strategic investments and innovation, Company X can be a key benefactor of this unprecedented space in the near future.
ContributorsShapiro, Brandon (Co-author) / Quintana, Alex (Co-author) / Sigrist, Austin (Co-author) / Clark, Rachael (Co-author) / Carlton, Corrine (Co-author) / Simonson, Mark (Thesis director) / Reber, Kevin (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133824-Thumbnail Image.png
Description
Autonomous vehicles (AV) are capable of producing massive amounts of real time and precise data. This data has the ability to present new business possibilities across a vast amount of markets. These possibilities range from simple applications to unprecedented use cases. With this in mind, the three main objectives we

Autonomous vehicles (AV) are capable of producing massive amounts of real time and precise data. This data has the ability to present new business possibilities across a vast amount of markets. These possibilities range from simple applications to unprecedented use cases. With this in mind, the three main objectives we sought to accomplish in our thesis were to: 1. Understand if there is monetization potential in autonomous vehicle data 2. Create a financial model of what detailing the viability of AV data monetization 3. Discover how a particular company (Company X) can take advantage of this opportunity, and outline how that company might access this autonomous vehicle data.
ContributorsCarlton, Corrine (Co-author) / Clark, Rachael (Co-author) / Quintana, Alex (Co-author) / Shapiro, Brandon (Co-author) / Sigrist, Austin (Co-author) / Simonson, Mark (Thesis director) / Reber, Kevin (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
127809-Thumbnail Image.png
Description

There is a need for indicators of transportation-land use system quality that are understandable to a wide range of stakeholders, and which can provide immediate feedback on the quality of interactively designed scenarios. Location-based accessibility indicators are promising candidates, but indicator values can vary strongly depending on time of day

There is a need for indicators of transportation-land use system quality that are understandable to a wide range of stakeholders, and which can provide immediate feedback on the quality of interactively designed scenarios. Location-based accessibility indicators are promising candidates, but indicator values can vary strongly depending on time of day and transfer wait times. Capturing this variation increases complexity, slowing down calculations. We present new methods for rapid yet rigorous computation of accessibility metrics, allowing immediate feedback during early-stage transit planning, while being rigorous enough for final analyses. Our approach is statistical, characterizing the uncertainty and variability in accessibility metrics due to differences in departure time and headway-based scenario specification. The analysis is carried out on a detailed multi-modal network model including both public transportation and streets. Land use data are represented at high resolution. These methods have been implemented as open-source software running on commodity cloud infrastructure. Networks are constructed from standard open data sources, and scenarios are built in a map-based web interface. We conclude with a case study, describing how these methods were applied in a long-term transportation planning process for metropolitan Amsterdam.

ContributorsConway, Matthew Wigginton (Author) / Byrd, Andrew (Author) / van der Linden, Marco (Author)
Created2017
127817-Thumbnail Image.png
Description

Accessibility is increasingly used as a metric when evaluating changes to public transport systems. Transit travel times contain variation depending on when one departs relative to when a transit vehicle arrives, and how well transfers are coordinated given a particular timetable. In addition, there is necessarily uncertainty in the value

Accessibility is increasingly used as a metric when evaluating changes to public transport systems. Transit travel times contain variation depending on when one departs relative to when a transit vehicle arrives, and how well transfers are coordinated given a particular timetable. In addition, there is necessarily uncertainty in the value of the accessibility metric during sketch planning processes, due to scenarios which are underspecified because detailed schedule information is not yet available. This article presents a method to extend the concept of "reliable" accessibility to transit to address the first issue, and create confidence intervals and hypothesis tests to address the second.

ContributorsConway, Matthew Wigginton (Author) / Byrd, Andrew (Author) / van Eggermond, Michael (Author)
Created2018-07-23