Matching Items (11)
Filtering by

Clear all filters

152025-Thumbnail Image.png
Description
At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis

At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.
ContributorsPrakash, Nitin (Author) / Heydt, Gerald T. (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152153-Thumbnail Image.png
Description
Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can

Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can be divided into two parts. The first part of this dissertation focuses on developing a more accurate network model for TEP study. First, a mixed-integer linear programming (MILP) based TEP model is proposed for solving multi-stage TEP problems. Compared with previous work, the proposed approach reduces the number of variables and constraints needed and improves the computational efficiency significantly. Second, the AC power flow model is applied to TEP models. Relaxations and reformulations are proposed to make the AC model based TEP problem solvable. Third, a convexified AC network model is proposed for TEP studies with reactive power and off-nominal bus voltage magnitudes included in the model. A MILP-based loss model and its relaxations are also investigated. The second part of this dissertation investigates the uncertainty modeling issues in the TEP problem. A two-stage stochastic TEP model is proposed and decomposition algorithms based on the L-shaped method and progressive hedging (PH) are developed to solve the stochastic model. Results indicate that the stochastic TEP model can give a more accurate estimation of the annual operating cost as compared to the deterministic TEP model which focuses only on the peak load.
ContributorsZhang, Hui (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Mittelmann, Hans D (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2013
153496-Thumbnail Image.png
Description
An important operating aspect of all transmission systems is power system stability

and satisfactory dynamic performance. The integration of renewable resources in general, and photovoltaic resources in particular into the grid has created new engineering issues. A particularly problematic operating scenario occurs when conventional generation is operated at a low level

An important operating aspect of all transmission systems is power system stability

and satisfactory dynamic performance. The integration of renewable resources in general, and photovoltaic resources in particular into the grid has created new engineering issues. A particularly problematic operating scenario occurs when conventional generation is operated at a low level but photovoltaic solar generation is at a high level. Significant solar photovoltaic penetration as a renewable resource is becoming a reality in some electric power systems. In this thesis, special attention is given to photovoltaic generation in an actual electric power system: increased solar penetration has resulted in significant strides towards meeting renewable portfolio standards. The impact of solar generation integration on power system dynamics is studied and evaluated.

This thesis presents the impact of high solar penetration resulting in potentially

problematic low system damping operating conditions. This is the case because the power system damping provided by conventional generation may be insufficient due to reduced system inertia and change in power flow patterns affecting synchronizing and damping capability in the AC system. This typically occurs because conventional generators are rescheduled or shut down to allow for the increased solar production. This problematic case may occur at any time of the year but during the springtime months of March-May, when the system load is low and the ambient temperature is relatively low, there is the potential that over voltages may occur in the high voltage transmission system. Also, reduced damping in system response to disturbances may occur. An actual case study is considered in which real operating system data are used. Solutions to low damping cases are discussed and a solution based on the retuning of a conventional power system stabilizer is given in the thesis.
ContributorsPethe, Anushree Sanjeev (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
151247-Thumbnail Image.png
Description
In the United States, especially in metropolitan areas, transmission infra-structure is congested due to a combination of increasing load demands, declining investment, and aging facilities. It is anticipated that significant investments will be required for new construction and upgrades in order to serve load demands. This thesis explores higher phase

In the United States, especially in metropolitan areas, transmission infra-structure is congested due to a combination of increasing load demands, declining investment, and aging facilities. It is anticipated that significant investments will be required for new construction and upgrades in order to serve load demands. This thesis explores higher phase order systems, specifically, six-phase, as a means of increasing power transfer capability, and provides a comparison with conventional three-phase double circuit transmission lines. In this thesis, the line parameters, electric and magnetic fields, and right of way are the criteria for comparing six-phase and three-phase double circuit lines. The calculations of the criteria were achieved by a program developed using MATLAB. This thesis also presents fault analysis and recommends suitable pro-tection for six-phase transmission lines. This calculation was performed on 4-bus, 9-bus, and 118-bus systems from Powerworld® sample cases. The simulations were performed using Powerworld® and PSCAD®. Line parameters calculations performed in this thesis show that line imped-ances in six-phase lines have a slight difference, compared to three-phase double circuit line. The shunt capacitance of compacted six phase line is twice of the value in the three-phase double circuit line. As a consequence, the compacted six-phase line provides higher surge impedance loadings. The electric and magnetic fields calculations show that, ground level electric fields of the six-phase lines decline more rapidly as the distance from center of the lines increase. The six-phase lines have a better performance on ground level magnetic field. Based on the electric and magnetic field results, right of way re-quirements for the six-phase lines and three-phase double circuit line were calcu-lated. The calculation results of right of way show that six-phase lines provide higher power transfer capability with a given right of way. Results from transmission line fault analysis, and protection study show that, fault types and protection system in six-phase lines are more complicated, com-pared to three-phase double circuit line. To clarify the concern about six-phase line protection, a six-phase line protection system was designed. Appropriate pro-tection settings were determined for a six-phase line in the 4-bus system.
ContributorsDeng, Xianda (Author) / Gorur, Ravi (Thesis advisor) / Heydt, Gerald (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2012
153938-Thumbnail Image.png
Description
Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission system and more are planned to be added. Addition of

Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission system and more are planned to be added. Addition of these shunt capacitors may create resonance conditions in response to harmonic voltages and currents. Such resonance, if it occurs, may create problematic issues in the system. It is main objective of this thesis to identify potential problematic effects that could occur after placing new shunt capacitors at selected buses in the Arizona network. Part of the objective is to create a systematic plan for avoidance of resonance issues.

For this study, a method of capacitance scan is proposed. The bus admittance matrix is used as a model of the networked transmission system. The calculations on the admittance matrix were done using Matlab. The test bed is the actual transmission system in Arizona; however, for proprietary reasons, bus names are masked in the thesis copy in-tended for the public domain. The admittance matrix was obtained from data using the PowerWorld Simulator after equivalencing the 2016 summer peak load (planning case). The full Western Electricity Coordinating Council (WECC) system data were used. The equivalencing procedure retains only the Arizona portion of the WECC.

The capacitor scan results for single capacitor placement and multiple capacitor placement cases are presented. Problematic cases are identified in the form of ‘forbidden response. The harmonic voltage impact of known sources of harmonics, mainly large scale HVDC sources, is also presented.

Specific key results for the study indicated include:

• The forbidden zones obtained as per the IEEE 519 standard indicates the bus 10 to be the most problematic bus.

• The forbidden zones also indicate that switching values for the switched shunt capacitor (if used) at bus 3 should be should be considered carefully to avoid resonance condition from existing.

• The highest sensitivity of 0.0033 per unit for HVDC sources of harmonics was observed at bus 7 when all the HVDC sources were active at the same time.
ContributorsPatil, Hardik U (Author) / Heydt, Gerald T (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
153603-Thumbnail Image.png
Description
Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods.

Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods. This research presents robust corrective topology control, which is a transmission switching methodology used for system reliability as well as to facilitate renewable integration.

This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line to suggest switching actions that can be used in a dynamic security assessment tool in real-time. The proposed robust topology control algorithm can also generate multiple corrective switching actions for a particular contingency. The solution obtained from the robust topology control algorithm is guaranteed to be feasible for the entire uncertainty set, i.e., a range of system operating states.

Furthermore, this research extends the benefits of robust corrective topology control to renewable resource integration. In recent years, the penetration of renewable resources in electrical power systems has increased. These renewable resources add more complexities to power system operations, due to their intermittent nature. This research presents robust corrective topology control as a congestion management tool to manage power flows and the associated renewable uncertainty. The proposed day-ahead method determines the maximum uncertainty in renewable resources in terms of do-not-exceed limits combined with corrective topology control. The results obtained from the topology control algorithm are tested for system stability and AC feasibility.

The scalability of do-not-exceed limits problem, from a smaller test case to a realistic test case, is also addressed in this research. The do-not-exceed limit problem is simplified by proposing a zonal do-not-exceed limit formulation over a detailed nodal do-not-exceed limit formulation. The simulation results show that the zonal approach is capable of addressing scalability of the do-not-exceed limit problem for a realistic test case.
ContributorsKorad, Akshay Shashikumar (Author) / Hedman, Kory W (Thesis advisor) / Ayyanar, Raja (Committee member) / Vittal, Vijay (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2015
154542-Thumbnail Image.png
Description
Two significant trends of recent power system evolution are: (1) increasing installa-tion of dynamic loads and distributed generation resources in distribution systems; (2) large-scale renewable energy integration at the transmission system level. A majority of these devices interface with power systems through power electronic converters. However, existing transient stability (TS)

Two significant trends of recent power system evolution are: (1) increasing installa-tion of dynamic loads and distributed generation resources in distribution systems; (2) large-scale renewable energy integration at the transmission system level. A majority of these devices interface with power systems through power electronic converters. However, existing transient stability (TS) simulators are inadequate to represent the dynamic behavior of these devices accurately. On the other hand, simulating a large system using an electromagnetic transient (EMT) simulator is computationally impractical. EMT-TS hybrid simulation approach is an alternative to address these challenges. Furthermore, to thoroughly analyze the increased interactions among the transmission and distribution systems, an integrated modeling and simulation approach is essential.

The thesis is divided into three parts. The first part focuses on an improved hybrid simulation approach and software development. Compared to the previous work, the pro-posed approach has three salient features: three-sequence TS simulation algorithm, three-phase/three-sequence network equivalencing and flexible switching of the serial and par-allel interaction protocols.

The second part of the thesis concentrates on the applications of the hybrid simula-tion tool. The developed platform is first applied to conduct a detailed fault-induced de-layed voltage recovery (FIDVR) study on the Western Electricity Coordinating Council (WECC) system. This study uncovers that after a normally cleared single line to ground fault at the transmission system could cause air conditioner motors to stall in the distribu-tion systems, and the motor stalling could further propagate to an unfaulted phase under certain conditions. The developed tool is also applied to simulate power systems inter-faced with HVDC systems, including classical HVDC and the new generation voltage source converter (VSC)-HVDC system.

The third part centers on the development of integrated transmission and distribution system simulation and an advanced hybrid simulation algorithm with a capability of switching from hybrid simulation mode to TS simulation. Firstly, a modeling framework suitable for integrated transmission and distribution systems is proposed. Secondly, a power flow algorithm and a diakoptics based dynamic simulation algorithm for the integrated transmission and distribution system are developed. Lastly, the EMT-TS hybrid simulation algorithm is combined with the diakoptics based dynamic simulation algorithm to realize flexible simulation mode switching to increase the simulation efficiency.
ContributorsHuang, Qiuhua (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John M. (Committee member) / Heydt, Gerald T. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016
154851-Thumbnail Image.png
Description
This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power

This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power consumptions with respect to frequency and voltage perturbations. This level of linearized performance-based model is suitable for the investigation of the damping of small-magnitude low-frequency oscillations. The complete transient model is proposed by decomposing the motor, converter and control models into d-q axes components and developing a compatible electrical interface to the positive-sequence network in the PSTS simulators. The complete transient drive model is primarily used to examine the system response subject to transient voltage depression considering increasing penetration of converter-driven motor loads.

For developing the performance-based model, modulations are performed on the supply side of the full drive system to procure magnitude and phase responses of active and reactive powers with respect to the supply voltage and frequency for a range of discrete frequency points. The prediction error minimization (PEM) technique is utilized to generate the curve-fitted transfer functions and corresponding bode plots. For developing the complete drive model in the PSTS simulation program, a positive-sequence voltage source is defined properly as the interface of the model to the external system. The dc-link of the drive converter is implemented by employing the average model of the PWM converter, and is utilized to integrate the line-side rectifier and machine-side inverter.

Numerical simulation is then conducted on sample test systems, synthesized with suitable characteristics to examine performance of the developed models. The simulation results reveal that with growing amount of drive loads being distributed in the system, the small-signal stability of the system is improved in terms of the desirable damping effects on the low-frequency system oscillations of voltage and frequency. The transient stability of the system is also enhanced with regard to the stable active power and reactive power controls of the loads, and the appropriate VAr support capability provided by the drive loads during a contingency.
ContributorsLiu, Yuan (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2016
149406-Thumbnail Image.png
Description
After a power system blackout, system restoration is the most important task for the operators. Most power systems rely on an off&ndashline; restoration plan and the experience of operators to select scenarios for the black start path. Using an off&ndashline; designed restoration plan based on past experience may not be

After a power system blackout, system restoration is the most important task for the operators. Most power systems rely on an off&ndashline; restoration plan and the experience of operators to select scenarios for the black start path. Using an off&ndashline; designed restoration plan based on past experience may not be the most reliable approach under changing network configurations and loading levels. Hence, an objective restoration path selection procedure, including the option to check constraints, may be more responsive in providing directed guidance to the operators to identify the optimal transmission path to deliver power to other power plants or to pick up load as needed. After the system is subjected to a blackout, parallel restoration is an efficient way to speed up the restoration process. For a large scale power system, this system sectionalizing problem is quite complicated when considering black&ndashstart; constraints, generation/load balance constraints and voltage constraints. This dissertation presents an ordered binary decision diagram (OBDD) &ndashbased; system sectionalizing method, by which the splitting points can be quickly found. The simulation results on the IEEE 39 and 118&ndashbus; system show that the method can successfully split the system into subsystems satisfying black&ndashstart; constraints, generation/load balance constraints and voltage constraints. A power transfer distribution factor (PTDF)&ndashbased; approach will be described in this dissertation to check constraints while restoring the system. Two types of restoration performance indices are utilized considering all possible restoration paths, which are then ranked according to their expected performance characteristics as reflected by the restoration performance index. PTDFs and weighting factors are used to determine the ordered list of restoration paths, which can enable the load to be picked up by lightly loaded lines or relieve stress on heavily loaded lines. A transmission path agent can then be formulated by performing the automatic path selection under different system operating conditions. The proposed restoration strategy is tested on the IEEE&ndash39; bus system and on the Western region of the Entergy system. The testing results reveal that the proposed strategy can be used in real time.
ContributorsWang, Chong (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Committee member) / Heydt, Gerald (Committee member) / Farmer, Richard (Committee member) / Arizona State University (Publisher)
Created2010
135937-Thumbnail Image.png
Description
With an abundance of sunshine, the state of Arizona has the potential for producing large amounts of solar energy. However, in recent years Arizona has also become the focal point in a political battle to determine the value and future of residential solar energy fees, which has critical implications for

With an abundance of sunshine, the state of Arizona has the potential for producing large amounts of solar energy. However, in recent years Arizona has also become the focal point in a political battle to determine the value and future of residential solar energy fees, which has critical implications for distributed generation. As the debate grows, it is clear that solar policies developed in Arizona will influence other state regulators regarding their solar rate structures and Net Energy Metering; however, there is a hindrance in the progress of this discussion due to the varying frameworks of the stakeholders involved. For this project, I set out to understand and analyze why the different stakeholders have such conflicting viewpoints. Some groups interpret energy as a financial and technological object while others view it is an inherently social and political issue. I conducted research in three manners: 1) I attended public meetings, 2) hosted interviews, and 3) analyzed reports and studies on the value of solar. By using the SRP 2015 Rate Case as my central study, I will discuss how these opposing viewpoints do or do not incorporate various forms of justice such as distributive, participatory, and recognition justice. In regards to the SRP Rate Case, I will look at both the utility- consumer relationship and the public meeting processes in which they interact, in addition to the pricing plans. This work reveals that antiquated utility structures and a lack of participation and recognition justice are hindering the creation of policy changes that satisfy both the needs of the utilities and the community at large.
ContributorsGidney, Jacob Robert (Author) / Richter, Jennifer (Thesis director) / Jurik, Nancy (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12