Matching Items (7)
Filtering by

Clear all filters

133177-Thumbnail Image.png
Description
From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how

From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how these policies interact with hydroclimatic variability. As explanatory variables in multiple linear regression (MLR) models, water use policies were found to be significant at both the zip code and city levels. Policies that specifically target behavioral changes were significant mathematical drivers of water use in city-level models. Policy data was aggregated into a timeline and coded based on categories including user type, whether the policy was voluntary or mandatory, the targeted water use type, and whether the change in question concerns active or passive conservation. The analyzed policies include but are not limited to state drought declarations, regulatory municipal ordinances, and incentive programs for household appliances. Spatial averages of available hydroclimatic data have been computed and validated using inverse distance weighting methods. The data was aggregated at the zip code level to be comparable to the available water use data for use in MLR models. Factors already known to affect water use, such as temperature, precipitation, income, and water stress, were brought into the MLR models as explanatory variables. After controlling for these factors, the timeline policies were brought into the model as coded variables to test their effect on water demand during the years 2000-2017. Clearly identifying which policy traits are effective will inform future policymaking in cities aiming to conserve water. The findings suggest that drought-related policies impact per capita urban water use. The results of the city level MLR models indicate that implementation of mandatory policies that target water use behaviors effectively reduce water use. Temperature, income, unemployment, and the WaSSI were also observed to be mathematical drivers of water use. Interaction effects between policies and the WaSSI were statistically significant at both model scales.
ContributorsHjelmstad, Annika Margaret (Author) / Garcia, Margaret (Thesis director) / Larson, Kelli (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
148085-Thumbnail Image.png
Description

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices.

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices. This project may aid in bridging the gap between the two in regard to the farmers’ sustainability goals. This project will move forward by continuing interviews with farmers as well as collecting soil and water from the farms in order to more accurately quantify the sustainability of the farms’ practices. This project demonstrates that there is some degree of misalignment between perception and reality. Two farms claimed they were sustainable when their practices did not reflect that, while 2 farms said they were not sure if they were sustainable when their practices indicated otherwise. Samples from two farms showed high concentrations of nutrients and salts, supporting the idea that there may be a mismatch between perceived and actual sustainability.

ContributorsBonham, Emma Eileen (Author) / Muenich, Rebecca (Thesis director) / Zanin, Alaina (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The environment today is facing concerns over accumulation of plastics in landfills as well as excessive CO2 emissions. Containers and packaging take up approximately 15 million tons each year, and accumulations such as the Great Pacific Garbage Patch are entering the oceans. Work has been done to alter and treat

The environment today is facing concerns over accumulation of plastics in landfills as well as excessive CO2 emissions. Containers and packaging take up approximately 15 million tons each year, and accumulations such as the Great Pacific Garbage Patch are entering the oceans. Work has been done to alter and treat polyethylene plastic to be added to cement mixtures. This is done to increase bearing capacity and ductility of concrete in addition to decreasing carbon emissions and plastic waste.

ContributorsWestersund, Susanna (Author) / Hoover, Christian (Thesis director) / Soman, Silpa (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2023-05
Description

This thesis investigates the feasibility of using recycled ceramics as the aggregate in concrete, as an alternative to natural rock aggregates. The study evaluates the mechanical properties of concrete made with recycled ceramics and compares them with those of traditional concrete. The research involved laboratory experiments to determine compressive strength

This thesis investigates the feasibility of using recycled ceramics as the aggregate in concrete, as an alternative to natural rock aggregates. The study evaluates the mechanical properties of concrete made with recycled ceramics and compares them with those of traditional concrete. The research involved laboratory experiments to determine compressive strength and displacement. The results show that the concrete made with recycled ceramics exhibited higher compressive strength and lower maximum displacement than traditional concrete, which means it acted more brittle. However, when the recycled ceramics were used to replace only 50% of the rock aggregate, the compressive strength decreased while the maximum displacement stayed the same, though the study concludes that a larger sample size is needed for more reliable results. Based on the findings, the thesis concludes that while the use of recycled ceramics in concrete may not be suitable for structural concrete, it could still have potential as a sustainable building material in non-structural applications.

ContributorsLong, Mason (Author) / Hoover, Christian (Thesis director) / Pazhankave, Silpa (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2023-05
Description

Startups in the paper manufacturing are few & rare between. Agrix Paper takes a step towards innovating the traditional mass-scale paper making process & introduce non-wood fiber sourcing into the papermaking space. Using a hemp fiber-base, Agrix Paper hopes to develop a new paper manufacturing process that derives high-quality paper

Startups in the paper manufacturing are few & rare between. Agrix Paper takes a step towards innovating the traditional mass-scale paper making process & introduce non-wood fiber sourcing into the papermaking space. Using a hemp fiber-base, Agrix Paper hopes to develop a new paper manufacturing process that derives high-quality paper sourced from hemp & agricultural waste. Agrix Paper will reinvent the papermaking process for a more sustainable industry future.

ContributorsBarraza-Córdova, Erik (Author) / Byrum, Emily (Co-author) / DiFernando, Anthony (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
166030-Thumbnail Image.png
Description
When you get to a point in your day where you need a drink of water, what type of bottle do you reach for? A plastic bottle? In the US alone, over 500 billion bottles are used daily (or in a year), and this leads to an exorbitant amount of

When you get to a point in your day where you need a drink of water, what type of bottle do you reach for? A plastic bottle? In the US alone, over 500 billion bottles are used daily (or in a year), and this leads to an exorbitant amount of plastic waste that ends up in landfills, oceans, and finally, our bodies. Uni Flask is a unique solution tailored to meet the needs of college students throughout the US. Through the pairing of reusable, university themed bottles with our daily reminders and challenges, eliminating plastic waste is at the heart of our group's solution. The themed bottles will be available to not just students, but to anyone who is interested. The reminders you receive can be modified to your exact needs, and can be sent daily, weekly, or even monthly. Regardless of which option you choose, our team will include you in any competitions and challenges available, as our goal at Uni Flask is to not only cut down on plastic waste and consumption, but to help you achieve a healthier, hydrated lifestyle.
ContributorsOwen, Alexander (Author) / Algibez Flores, Lola (Co-author) / Mohandes, Nasim (Co-author) / Li, Amanda (Co-author) / Byrne, Jared (Thesis director) / Satpathy, Asish (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2022-05