Matching Items (691)
Filtering by

Clear all filters

150036-Thumbnail Image.png
Description
Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond.

Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond. Biosensor technology for use in clinical diagnostics, however, requires translational research that moves bench science and theoretical knowledge toward marketable products. Despite the high volume of academic research to date, only a handful of biomedical devices have become viable commercial applications. Academic research must increase its focus on practical uses for biosensors. This dissertation is an example of this increased focus, and discusses work to advance microfluidic-based protein biosensor technologies for practical use in clinical diagnostics. Four areas of work are discussed: The first involved work to develop reusable/reconfigurable biosensors that are useful in applications like biochemical science and analytical chemistry that require detailed sensor calibration. This work resulted in a prototype sensor and an in-situ electrochemical surface regeneration technique that can be used to produce microfluidic-based reusable biosensors. The second area of work looked at non-specific adsorption (NSA) of biomolecules, which is a persistent challenge in conventional microfluidic biosensors. The results of this work produced design methods that reduce the NSA. The third area of work involved a novel microfluidic sensing platform that was designed to detect target biomarkers using competitive protein adsorption. This technique uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. This method enabled us to selectively detect a thyroid cancer biomarker, thyroglobulin, in a controlled-proteins cocktail and a cardiovascular biomarker, fibrinogen, in undiluted human serum. The fourth area of work involved expanding the technique to produce a unique protein identification method; Pattern-recognition. A sample mixture of proteins generates a distinctive composite pattern upon interaction with a sensing platform consisting of multiple surfaces whereby each surface consists of a distinct type of protein pre-adsorbed on the surface. The utility of the "pattern-recognition" sensing mechanism was then verified via recognition of a particular biomarker, C-reactive protein, in the cocktail sample mixture.
ContributorsChoi, Seokheun (Author) / Chae, Junseok (Thesis advisor) / Tao, Nongjian (Committee member) / Yu, Hongyu (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
150048-Thumbnail Image.png
Description
A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene,

A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene, and xylenes (BTEX) via a homemade molecular imprinted polymer, and a specific detection and control circuit. The device is a wireless, portable, battery-powered, and cell-phone operated device. The device has been calibrated and validated in the laboratory and using selected ion flow tube mass spectrometry (SFIT-MS). The capability and robustness are also demonstrated in some field tests. It provides rapid and reliable detection of BTEX in real samples, including challenging high concentrations of interferents, and it is suitable for occupational, environmental health and epidemiological applications.
ContributorsChen, Zheng (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
149647-Thumbnail Image.png
Description
This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single

This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single base resolution could be achieved with economic setups. In chapter 7, it is illustrated that some ongoing measurements are indicating the sequence readout by making linear scan on a piece of short DNA oligomer. However, to overcome the difficulties of controlling DNA especially ssDNA movement, it is much better to have the tunneling measurement incorporated onto a robust nanopore device to realize sequential reading of the DNA sequence while it is being translocated.
ContributorsHuang, Shuo (Author) / Lindsay, Stuart (Thesis advisor) / Sankey, Otto (Committee member) / Tao, Nongjian (Committee member) / Drucker, Jeff (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150364-Thumbnail Image.png
Description
Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser

Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser diode would enable further advances and deployment of these technologies. The output of conventional laser diodes is however limited to a single wavelength band with a few subsequent lasing modes depending on the device design. This thesis investigates a novel semiconductor laser device design with a single cavity waveguide capable of dual-wavelength laser output with large spectral separation. The novel dual-wavelength semiconductor laser diode uses two shorter- and longer-wavelength active regions that have separate electron and hole quasi-Fermi energy levels and carrier distributions. The shorter-wavelength active region is based on electrical injection as in conventional laser diodes, and the longer-wavelength active region is then pumped optically by the internal optical field of the shorter-wavelength laser mode, resulting in stable dual-wavelength laser emission at two different wavelengths quite far apart. Different designs of the device are studied using a theoretical model developed in this work to describe the internal optical pumping scheme. The carrier transport and separation of the quasi-Fermi distributions are then modeled using a software package that solves Poisson's equation and the continuity equations to simulate semiconductor devices. Three different designs are grown using molecular beam epitaxy, and broad-area-contact laser diodes are processed using conventional methods. The modeling and experimental results of the first generation design indicate that the optical confinement factor of the longer-wavelength active region is a critical element in realizing dual-wavelength laser output. The modeling predicts lower laser thresholds for the second and third generation designs; however, the experimental results of the second and third generation devices confirm challenges related to the epitaxial growth of the structures in eventually demonstrating dual-wavelength laser output.
ContributorsGreen, Benjamin C (Author) / Zhang, Yong-Hang (Thesis advisor) / Ning, Cun-Zheng (Committee member) / Tao, Nongjian (Committee member) / Roedel, Ronald J (Committee member) / Arizona State University (Publisher)
Created2011
147837-Thumbnail Image.png
Description

Human-environment interactions in aeolian (windblown) systems has focused research on<br/>human’s role in causing and aiding recovery from natural and anthropogenic disturbance. There<br/>is room for improvement in understanding the best methods and considerations for manual<br/>coastal foredune restoration. Furthermore, the extent to which humans play a role in changing the<br/>shape and surface

Human-environment interactions in aeolian (windblown) systems has focused research on<br/>human’s role in causing and aiding recovery from natural and anthropogenic disturbance. There<br/>is room for improvement in understanding the best methods and considerations for manual<br/>coastal foredune restoration. Furthermore, the extent to which humans play a role in changing the<br/>shape and surface textures of quartz sand grains is poorly understood. The goal of this thesis is<br/>two-fold: 1) quantify the geomorphic effectiveness of a multi-year manually rebuilt foredune and<br/>2) compare the shapes and microtextures on disturbed and undisturbed quartz sand grains. For<br/>the rebuilt foredune, uncrewed aerial systems (UAS) were used to survey the site, collecting<br/>photos to create digital surface models (DSMs). These DSMs were compared at discrete<br/>moments in time to create a sediment budget. Water levels and cross-shore modeling is also<br/>considered to predict the decadal evolution of the site. In the two years since rebuilding, the<br/>foredune has been stable, but not geomorphically resilient. Modeling shows landward foredune<br/>retreat and beach widening. For the quartz grains, t-testing of shape characteristics showed that<br/>there may be differences in the mean circularity between grains from off-highway vehicle and<br/>non-riding areas. Quartz grains from a variety of coastal and inland dunes were imaged using a<br/>scanning electron microscopy to search for evidence of anthropogenically-induced<br/>microtextures. On grains from Oceano Dunes in California, encouraging textures like parallel<br/>striations, grain fracturing, and linear conchoidal fractures provide exploratory evidence of<br/>anthropogenic microtextures. More focused research is recommended to confirm this exploratory<br/>work.

ContributorsMarvin, Michael Colin (Author) / Walker, Ian (Thesis director) / Dorn, Ron (Committee member) / Schmeeckle, Mark (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147842-Thumbnail Image.png
Description

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer the question of whether a similar interaction leads to savings, a model-free process that is described as faster relearning when experiencing something familiar. This was tested in a two-week reaching task conducted on a robotic arm capable of perturbing movements. The task was designed so that the two sessions differed in their history of errors. By measuring the change in the learning rate, the savings was determined at various points. The results showed that the history of errors successfully modulated savings. Thus, this supports the notion that the two complementary systems interact to develop savings. Additionally, this report was part of a larger study that will explore the organizational structure of the complementary systems as well as the neural basis of this motor learning.

ContributorsRuta, Michael (Author) / Santello, Marco (Thesis director) / Blais, Chris (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147851-Thumbnail Image.png
Description

Edge computing is a new and growing market that Company X has an opportunity to expand their presence. Within this paper, we compare many external research studies to better quantify the Total Addressable Market of the Edge Computing space. Furthermore, we highlight which Segments within Edge Computing have the most

Edge computing is a new and growing market that Company X has an opportunity to expand their presence. Within this paper, we compare many external research studies to better quantify the Total Addressable Market of the Edge Computing space. Furthermore, we highlight which Segments within Edge Computing have the most opportunities for growth, along with identify a specific market strategy that Company X could do to capture market share within the most opportunistic segment.

ContributorsHamkins, Sean (Co-author) / Raimondi, Ronnie (Co-author) / Gandolfi, Micheal (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147863-Thumbnail Image.png
Description

Over the years, advances in research have continued to decrease the size of computers from the size of<br/>a room to a small device that could fit in one’s palm. However, if an application does not require extensive<br/>computation power nor accessories such as a screen, the corresponding machine could be microscopic,<br/>only

Over the years, advances in research have continued to decrease the size of computers from the size of<br/>a room to a small device that could fit in one’s palm. However, if an application does not require extensive<br/>computation power nor accessories such as a screen, the corresponding machine could be microscopic,<br/>only a few nanometers big. Researchers at MIT have successfully created Syncells, which are micro-<br/>scale robots with limited computation power and memory that can communicate locally to achieve<br/>complex collective tasks. In order to control these Syncells for a desired outcome, they must each run a<br/>simple distributed algorithm. As they are only capable of local communication, Syncells cannot receive<br/>commands from a control center, so their algorithms cannot be centralized. In this work, we created a<br/>distributed algorithm that each Syncell can execute so that the system of Syncells is able to find and<br/>converge to a specific target within the environment. The most direct applications of this problem are in<br/>medicine. Such a system could be used as a safer alternative to invasive surgery or could be used to treat<br/>internal bleeding or tumors. We tested and analyzed our algorithm through simulation and visualization<br/>in Python. Overall, our algorithm successfully caused the system of particles to converge on a specific<br/>target present within the environment.

ContributorsMartin, Rebecca Clare (Author) / Richa, Andréa (Thesis director) / Lee, Heewook (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148156-Thumbnail Image.png
Description

This thesis project is part of a larger collaboration documenting the history of the ASU Biodesign Clinical Testing Laboratory (ABCTL). There are many different aspects that need to be considered when transforming to a clinical testing laboratory. This includes the different types of tests performed in the laboratory. In addition

This thesis project is part of a larger collaboration documenting the history of the ASU Biodesign Clinical Testing Laboratory (ABCTL). There are many different aspects that need to be considered when transforming to a clinical testing laboratory. This includes the different types of tests performed in the laboratory. In addition to the diagnostic polymerase chain reaction (PCR) test that is performed detecting the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), antibody testing is also performed in clinical laboratories. Antibody testing is used to detect a previous infection. Antibodies are produced as part of the immune response against SARS-CoV-2. There are many different forms of antibody tests and their sensitives and specificities have been examined and reviewed in the literature. Antibody testing can be used to determine the seroprevalence of the disease which can inform policy decisions regarding public health strategies. The results from antibody testing can also be used for creating new therapeutics like vaccines. The ABCTL recognizes the shifting need of the community to begin testing for previous infections of SARS-CoV-2 and is developing new forms of antibody testing that can meet them.

ContributorsRuan, Ellen (Co-author) / Smetanick, Jennifer (Co-author) / Majhail, Kajol (Co-author) / Anderson, Laura (Co-author) / Breshears, Scott (Co-author) / Compton, Carolyn (Thesis director) / Magee, Mitch (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148176-Thumbnail Image.png
Description

In this project, I examined the relationship between lockdowns implemented by COVID-19 and the activity of animals in urban areas. I hypothesized that animals became more active in urban areas during COVID-19 quarantine than they were before and I wanted to see if my hypothesis could be researched through Twitter

In this project, I examined the relationship between lockdowns implemented by COVID-19 and the activity of animals in urban areas. I hypothesized that animals became more active in urban areas during COVID-19 quarantine than they were before and I wanted to see if my hypothesis could be researched through Twitter crowdsourcing. I began by collecting tweets using python code, but upon examining all data output from code-based searches, I concluded that it is quicker and more efficient to use the advanced search on Twitter website. Based on my research, I can neither confirm nor deny if the appearance of wild animals is due to the COVID-19 lockdowns. However, I was able to discover a correlational relationship between these two factors in some research cases. Although my findings are mixed with regard to my original hypothesis, the impact that this phenomenon had on society cannot be denied.

ContributorsHeimlich, Kiana Raye (Author) / Dorn, Ronald (Thesis director) / Martin, Roberta (Committee member) / Donovan, Mary (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05