Matching Items (103)
133691-Thumbnail Image.png
Description
Mobile health or "mHealth" defines a broad spectrum of medical or public health practice supported by mobile devices. The patient's perception of mobile health applications is the key point in confronting whether or not patients will utilize the tools at their disposal As such, the primary aim of this study

Mobile health or "mHealth" defines a broad spectrum of medical or public health practice supported by mobile devices. The patient's perception of mobile health applications is the key point in confronting whether or not patients will utilize the tools at their disposal As such, the primary aim of this study was to examine participant feedback through quantitative and qualitative measures using the Therapy Evaluation Questionnaire and a patient interview, respectively, to further understand the patient rated acceptability of using BeWell24 and SleepWell24 for improving health outcomes. For BeWell24, it was hypothesized that patients who received the Multicomponent version would report higher acceptability scores than those randomized to the Health Education version. Furthermore, in regard to SleepWell24, it was hypothesized that the SleepWell24 patient would provide positive feedback and suggestions regarding their own experience with the SleepWell24 app. Data from this thesis was pulled from two ongoing randomized controlled trials currently being conducted at the Phoenix Veteran Affairs Health Care Service (PVACHS) and Mayo Clinic hospitals. Means, standard deviations, frequencies, and percentages were commuted to summarize demographics and TEQ scores. In addition, key concepts from a qualitative interview with a SleepWell24 participant were derived. The results showed a greater acceptability of the multicomponent versions of BeWell24 and SleepWell24 but a lower TEQ score of perceived usability. mHealth implementations pose a potential to become an important part of the health sector for establishing innovative approaches to delivering care, and while benefits have been highly praised, it is clear that the perceptions of mHealth must be positive if the technology is to transcend into a practical clinical setting.
ContributorsJimenez, Asael (Author) / Buman, Matthew (Thesis director) / Epstein, Dana (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134831-Thumbnail Image.png
Description
Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices.

Graphene is a very strong two-dimensional material with a lot of potential applications in microelectromechanical systems (MEMS). In this research, graphene is being optimized for use in a 5 m x 5 m graphene resonator. To work properly, this graphene resonator must have a uniform strain across all manufactured devices. To reduce strain induced in graphene sheets grown for use in these resonators, evaporated platinum has been used in this investigation due to its relatively lower surface roughness compared to copper films. The final goal is to have the layer of ultrathin platinum (<=200 nm) deposited on the MEMS graphene resonator and used to grow graphene directly onto the devices to remove the manual transfer step due to its inscalability. After growth, graphene is coated with polymer and the platinum is then etched. This investigation concentrated on the transfer process of graphene onto Si/SiO2 substrate from the platinum films. It was determined that the ideal platinum etchant was aqua regia at a volumetric ratio of 6:3:1 (H2O:HCl:HNO3). This concentration was dilute enough to preserve the polymer and graphene layer, but strong enough to etch within a day. Type and thickness of polymer support layers were also investigated. PMMA at a thickness of 200 nm was ideal because it was easy to remove with acetone and strong enough to support the graphene during the etch process. A reference growth recipe was used in this investigation, but now that the transfer has been demonstrated, growth can be optimized for even thinner films.
ContributorsCayll, David Richard (Author) / Tongay, Sefaattin (Thesis director) / Lee, Hyunglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134945-Thumbnail Image.png
Description
Sleep diaries and actigraphy are two common methods used to assess sleep subjectively and objectively, respectively. Compared to the gold standard of sleep assessment, polysomnography, sleep diaries and actigraphic methods are more cost-effective and simpler to use. This study aimed to compare the sleep parameters derived from actigraphy and slee

Sleep diaries and actigraphy are two common methods used to assess sleep subjectively and objectively, respectively. Compared to the gold standard of sleep assessment, polysomnography, sleep diaries and actigraphic methods are more cost-effective and simpler to use. This study aimed to compare the sleep parameters derived from actigraphy and sleep diaries (total sleep time, sleep onset latency, number of awakenings, wake after sleep onset, percentage of time awake, and sleep efficiency). Based on results from previous similar studies, it was hypothesized that the sleep diaries would overestimate the total sleep time parameter and underestimate wake parameters. Twenty healthy young adults without sleep problems volunteered to participate. The participants wore an Actiwatch 2 on their wrist and filled out a sleep diary every morning for the duration of six days. A high intraclass correlation coefficient value between subjective and objective sleep was found for the parameter total sleep time, even though total sleep time was found to be slightly overestimated by the sleep diaries. Sleep onset latency, wake after sleep onset, number of awakenings, percentage of time awake, and sleep efficiency were underestimated by the sleep diaries and did not have high correlation values. Based off of the ICC results, there does not seem to be a strong correlation between the Actiwatch 2 and the sleep diaries, but looking at the Bland Altman plots, there seems to be agreement between the methods.
ContributorsRameshkumar, Aarthi (Author) / Buman, Matthew (Thesis director) / Petrov, Megan (Committee member) / Diaz-Piedra, Carolina (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2016-12
134738-Thumbnail Image.png
Description
Recent research has confirmed and revealed many physical and mental benefits of yoga. The practice of yoga has spread throughout the western world, where it is widely used for the purpose of exercise and fitness. Due to its rise in popularity, there is a need for research regarding the energy

Recent research has confirmed and revealed many physical and mental benefits of yoga. The practice of yoga has spread throughout the western world, where it is widely used for the purpose of exercise and fitness. Due to its rise in popularity, there is a need for research regarding the energy expenditure required for different types of yoga. The majority of the literature cites yoga as being an effective exercise for light intensity activity, but there are not as many studies attempting to determine if there are postures and sequences that can meet the requirements for moderate physical activity. In addition, there is a need to validate mobile devices with which to measure energy expenditure (EE) that are compatible with the dynamic movements that occur during yoga. The purpose of this study was to measure energy expenditure of twenty-two yoga practitioners of varying experience during a 30-minute Vinyasa flow yoga practice and from this data collection determine: if an ashtanga-based vinyasa yoga class meets the criteria for moderate intensity physical activity, the reliability between the Actigraph and Oxycon Mobile and the validity of an Actigraph GT3X device worn on the hip in estimating energy expenditure for ashtanga-based vinyasa flow yoga. The Actigraph GT3X and the Oxycon mobile were used to measure energy expenditure. Mean values for energy expenditure recorded by the Oxycon and Actigraph were 3.19 ± 0.42 METs and 1.16 ± 0.23 METs respectively, exhibiting a significant difference in data collection. There was no correlation between the values recorded by the two devices, indicating that the Actigraph was not consistent with the Oxycon Mobile (previously validated for measurement of EE). Results of this study indicate that this Vinyasa flow yoga sequence does satisfy the criteria for moderate intensity physical activity as defined by ACSM with an average EE of 3.19 ± 0.42 METs, and that the Actigraph GT3X is not an accurate device for measurement of EE for yoga.
ContributorsHand, Lindsay Gabrielle (Author) / Huberty, Jennifer (Thesis director) / Buman, Matthew (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134663-Thumbnail Image.png
Description
Solid-state lithium-ion batteries are a major area of research due to their increased safety characteristics over conventional liquid electrolyte batteries. Lithium lanthanum zirconate (LLZO) is a promising garnet-type ceramic for use as a solid-state electrolyte due to its high ionic conductivity. The material exists in two dierent phases, one that

Solid-state lithium-ion batteries are a major area of research due to their increased safety characteristics over conventional liquid electrolyte batteries. Lithium lanthanum zirconate (LLZO) is a promising garnet-type ceramic for use as a solid-state electrolyte due to its high ionic conductivity. The material exists in two dierent phases, one that is cubic in structure and one that is tetragonal. One potential synthesis method that results in LLZO in the more useful, cubic phase, is electrospinning, where a mat of nanowires is spun and then calcined into LLZO. A phase containing lanthanum zirconate (LZO) and amorphous lithium occursas an intermediate during the calcination process. LZO has been shown to be a sintering aid for LLZO, allowing for lower sintering temperatures. Here it is shown the eects of internal LZO on the sintered pellets. This is done by varying the 700C calcination time to transform diering amounts of LZO and LLZO in electrospun nanowires, and then using the same sintering parameters for each sample. X-ray diraction was used to get structural and compositional analysis of both the calcined powders and sintered pellets. Pellets formed from wires calcined at 1 hour or longer contained only LLZO even if the calcined powder had only undergone the rst phase transformation. The relative density of the pellet with no initial LLZO of 61.0% was higher than that of the pellet with no LZO, which had a relative density of 57.7%. This allows for the same, or slightly higher, quality material to be synthesized with a shorter amount of processing time.
ContributorsLondon, Nathan Harry (Author) / Chan, Candace (Thesis director) / Tongay, Sefaattin (Committee member) / Department of Physics (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
161617-Thumbnail Image.png
Description
In the Rare-earth-Tri-telluride family, (RTe3s) [R=La, Ce, Nd, Sm, Gd, Tb, Dy, Er, Ho, Tm] the emergence of Charge Density Waves, (CDW) has been under investigation for a long time due to broadly tunable properties by either chemical substitution or pressure application. These quasi 2D Layered materials RTe3s undergo Fermi

In the Rare-earth-Tri-telluride family, (RTe3s) [R=La, Ce, Nd, Sm, Gd, Tb, Dy, Er, Ho, Tm] the emergence of Charge Density Waves, (CDW) has been under investigation for a long time due to broadly tunable properties by either chemical substitution or pressure application. These quasi 2D Layered materials RTe3s undergo Fermi Surface Nesting leading to CDW instability. CDWs are electronic instabilities found in low-dimensional materials with highly anisotropic electronic structures. Since the CDW is predominantly driven by Fermi-surface (FS) nesting, it is especially sensitive to pressure-induced changes in the electronic structure. The FS of RTe3s is a function of p-orbitals of Tellurium atoms, which are arranged in two adjacent planes in the crystal structure. Although the FS and electronic structure possess a nearly four-fold symmetry, RTe3s form an incommensurate CDW.This dissertation is structured as follows: Chapter 1 includes basic ideas of Quantum materials, followed by an introduction to CDW and RTe3s. In Chapter 2, there are fundamentals of crystal growth by Chemical Vapor Transport, including various precursors, transport agent, temperature gradient, and rate of the reaction. After the growth, the crystals were confirmed for lattice vibrations by Raman, for composition by Energy Dispersive Spectroscopy; crystal structure and orientation were confirmed by X-ray Diffraction; magnetic ordering was established by Vibrating sample measurement. Detailed CDW study was done on various RTe3s by Raman spectroscopy. The basic mechanism and instrumentations used in these characterizations are explained in Chapter 3. Chapter 4 includes experimental data for crystal growth and results of these characterizations for Parent RTe3s. Chapter 5 includes fundamental insights on Cationic alloying of RTe3s, along with one alloy system’s crystal growth and characterization. This work tries to explain the behavior of CDW by a Temperature-dependent Raman study of RTe3s established the CDW transition temperature accompanied by Phonon softening; Angle-resolved Raman data confirming the nearly four-fold symmetry; thickness-dependent Raman spectroscopy resulting in the conclusion that as thickness decreases CDW transition temperature increases. Also, CDW transition is analyzed as a function of alloying.
ContributorsAttarde, Yashika (Author) / Tongay, Sefaattin (Thesis advisor) / Botana, Antia (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021
171757-Thumbnail Image.png
Description
Meditation app usage is associated with decreases in stress, anxiety, and depression symptoms. Many meditation app subscribers, however, quickly abandon or reduce their app usage. This dissertation presents three manuscripts which 1) determined the behavioral, demographic, and socioeconomic factors associated with the abandonment of a meditation app, Calm, during the

Meditation app usage is associated with decreases in stress, anxiety, and depression symptoms. Many meditation app subscribers, however, quickly abandon or reduce their app usage. This dissertation presents three manuscripts which 1) determined the behavioral, demographic, and socioeconomic factors associated with the abandonment of a meditation app, Calm, during the COVID-19 pandemic, 2) determined which participant characteristics predicted meditation app usage in the first eight weeks after subscribing, and 3) determined if changes in stress, anxiety, and depressive symptoms from baseline to Week 8 predicted meditation app usage from Weeks 8-16. In Manuscript 1, a survey was distributed to Calm subscribers in March 2020 that assessed meditation app behavior and meditation habit strength, and demographic information. Cox proportional hazards regression models were estimated to assess time to app abandonment. In Manuscript 2, new Calm subscribers completed a baseline survey on participants’ demographic and baseline mental health information and app usage data were collected over 8 weeks. In Manuscript 3, new Calm subscribers completed a baseline and Week 8 survey on demographic and mental health information. App usage data were collected over 16 weeks. Regression models were used to assess app usage for Manuscripts 2 and 3. Findings from Manuscript 1 suggest meditating after an existing routine decreased risk of app abandonment for pre-pandemic subscribers and for pandemic subscribers. Additionally, meditating “whenever I can” decreased risk of abandonment among pandemic subscribers. No behavioral factors were significant predictors of app abandonment among the long-term subscribers. Findings from Manuscript 2 suggest men had more days of meditation than women. Mental health diagnosis increased average daily meditation minutes. Intrinsic motivation for meditation increased the likelihood of completing any meditation session, more days with meditation sessions, and more average daily meditation minutes. Findings from Manuscript 3 suggest improvements in stress increased average daily meditation minutes. Improvements in depressive symptoms decreased daily meditation minutes. Evidence from this three-manuscript dissertation suggests meditation cue, time of day, motivation, symptom changes, and demographic and socioeconomic variables may be used to predict meditation app usage.
ContributorsSullivan, Mariah (Author) / Stecher, Chad (Thesis advisor) / Huberty, Jennifer (Committee member) / Buman, Matthew (Committee member) / Larkey, Linda (Committee member) / Chung, Yunro (Committee member) / Arizona State University (Publisher)
Created2022
190774-Thumbnail Image.png
Description
This dissertation research project developed as an urgent response to physical inactivity, which has resulted in increased rates of obesity, diabetes, and metabolic disease worldwide. Incorporating enough daily physical activity (PA) is challenging for most people. This research aims to modulate the brain's reward systems to increase motivation for PA

This dissertation research project developed as an urgent response to physical inactivity, which has resulted in increased rates of obesity, diabetes, and metabolic disease worldwide. Incorporating enough daily physical activity (PA) is challenging for most people. This research aims to modulate the brain's reward systems to increase motivation for PA and, thus, slow the rapid increase in sedentary lifestyles. Transcranial direct current stimulation (tDCS) involves brain neuromodulation by facilitating or inhibiting spontaneous neural activity. tDCS applied to the dorsolateral prefrontal cortex (DLPFC) increases dopamine release in the striatum, an area of the brain involved in the reward–motivation pathways. I propose that a repeated intervention, consisting of tDCS applied to the DLPFC followed by a short walking exercise stimulus, enhances motivation for PA and daily PA levels in healthy adults. Results showed that using tDCS followed by short-duration walking exercise may enhance daily PA levels in low-physically active participants but may not have similar effects on those with higher levels of daily PA. Moreover, there was a significant effect on increasing intrinsic motivation for PA in males, but there were no sex-related differences in PA. These effects were not observed during a 2-week follow-up period of the study after the intervention was discontinued. Further research is needed to confirm and continue exploring the effects of tDCS on motivation for PA in larger cohorts of sedentary populations. This novel research will lead to a cascade of new evidence-based technological applications that increase PA by employing approaches rooted in biology.
ContributorsRuiz Tejada, Anaissa (Author) / Katsanos, Christos (Thesis advisor) / Neisewander, Janet (Committee member) / Sadleir, Rosalind (Committee member) / Buman, Matthew (Committee member) / Arizona State University (Publisher)
Created2023
190931-Thumbnail Image.png
Description
In the last few decades, extensive research efforts have been focused on scaling down silicon-based complementary metal-oxide semiconductor (CMOS) technology to enable the continuation of Moore’s law. State-of-art CMOS includes fully depleted silicon-on-insulator (FDSOI) field-effect-transistors (FETs) with ultra-thin silicon channels (6 nm), as well as other three-dimensional (3D) device architectures

In the last few decades, extensive research efforts have been focused on scaling down silicon-based complementary metal-oxide semiconductor (CMOS) technology to enable the continuation of Moore’s law. State-of-art CMOS includes fully depleted silicon-on-insulator (FDSOI) field-effect-transistors (FETs) with ultra-thin silicon channels (6 nm), as well as other three-dimensional (3D) device architectures like Fin-FETs, nanosheet FETs, etc. Significant research efforts have characterized these technologies towards various applications, and at different conditions including a wide range of temperatures from room temperature (300 K) down to cryogenic temperatures. Theoretical efforts have studied ultrascaled devices using Landauer theory to further understand their transport properties and predict their performance in the quasi-ballistic regime.Further scaling of CMOS devices requires the introduction of new semiconducting channel materials, as now established by the research community. Here, two-dimensional (2D) semiconductors have emerged as a promising candidate to replace silicon for next-generation ultrascaled CMOS devices. These emerging 2D semiconductors also have applications beyond CMOS, for example in novel memory, neuromorphic, and spintronic devices. Graphene is a promising candidate for spintronic devices due to its outstanding spin transport properties as evidenced by numerous studies in non-local lateral spin valve (LSV) geometries. The essential components of graphene-based LSV, such as graphene FETs, metal-graphene contacts, and tunneling barriers, were individually investigated as part of this doctoral dissertation. In this work, several contributions were made to these CMOS and beyond CMOS technologies. This includes comprehensive characterization and modeling of FDSOI nanoscale FETs from room temperature down to cryogenic temperatures. Using Landauer theory for nanoscale transistors, FDSOI devices were analyzed and modeled under quasi-ballistic operation. This was extended towards a virtual-source modeling approach that accounts for temperature-dependent quasi-ballistic transport and back-gate biasing effects. Additionally, graphene devices with ultrathin high-k gate dielectrics were investigated towards FETs, non-volatile memory, and spintronic devices. New contributions were made relating to charge trapping effects and their impact on graphene device electrostatics (Dirac voltage shifts) and transport properties (impact on mobility and conductivity). This work also studied contact resistance and tunneling effects using transfer length method (TLM) graphene FET structures and magnetic tunneling junction (MTJ) towards graphene-based LSV.
ContributorsZhou, Guantong (Author) / Sanchez Esqueda, Ivan (Thesis advisor) / Vasileska, Dragica (Committee member) / Tongay, Sefaattin (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2023
190901-Thumbnail Image.png
Description
The relationship between sleep and physical activity is an area of growing scientific interest, particularly in the context of older adults. The importance of examining long sleep duration and its influence on physical activity in this demographic becomes increasingly relevant given rising healthcare costs. This dissertation aims to investigate this

The relationship between sleep and physical activity is an area of growing scientific interest, particularly in the context of older adults. The importance of examining long sleep duration and its influence on physical activity in this demographic becomes increasingly relevant given rising healthcare costs. This dissertation aims to investigate this intricate relationship via secondary analysis by examining the effects of moderate time-in-bed (TIB) restriction (60 minutes per night)) on various intensities of physical activity (sedentary, light, moderate, vigorous, moderate-vigorous physical activity) in older adults classified as long sleepers and average duration sleepers. It was hypothesized that moderate TIB restriction would result in differential changes in physical activity levels across various intensities, with long sleepers exhibiting increased physical activity and average sleepers displaying decreased activity, potentially influenced by alterations in TST (total sleep time) and SE (sleep efficiency). Utilizing a randomized controlled trial design, this study examined the effect of treatment changes in objectively measures activity (waist actigraphy) and subjects physical activity levels as measured by the Godin Leisure-Time Exercise Questionnaire . Eligible participants were long sleepers (sleeping > 9 hours per night) and average sleepers (sleeping 7-9 hours per night). Both types of sleepers were either randomized to TIB restriction or asked to maintain their average sleep patterns. Mean TIB restriction compared with baseline was 39.5 minutes in average sleepers and 52.9 minutes in long sleepers randomized to TIB restriction . Contrary to the original hypothesis, no significant effect of TIB restriction was observed across all physical activity levels in either long sleepers or average sleepers. However, a notable association was found between increased sleep efficiency (+0.09% [SD = ± 4.64%]) and light physical activity (±31 minutes [SD = ± 104.81, R=0.445, P < 0.007]) in long sleepers undergoing TIB restriction. While this study presents several methodological limitations, including its nature as a secondary analysis and the less-than-intended achievement of TIB restriction, it adds a valuable layer to the existing body of research on sleep and physical activity in older adults. The findings suggest that moderate TIB restriction may not be sufficiently impactful to change behavior in physical activity levels, thus highlighting the need for more nuanced, targeted research in this domain.
ContributorsPerry, Christopher (Author) / Youngstedt, Shawn D (Thesis advisor) / Petrov, Megan (Committee member) / Swan, Pamela (Committee member) / Buman, Matthew (Committee member) / Ringenbach, Shannon (Committee member) / Arizona State University (Publisher)
Created2023