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ABSTRACT  

   

Pollinator populations globally have declined at concerning rates in recent years, 

which is problematic given that roughly a third of all food production depends on them. 

Managed honey bee colony losses in particular have alarmed beekeepers and scientists, 

especially in the United States. Widespread agrochemical use has been implicated as one 

of the major causes of these colony losses. While the lethal effects of agrochemicals often 

receive the most attention, sublethal effects can occur at lower doses and can 

substantially weaken colonies over time. Impaired associative learning ability is a 

sublethal effect of a number of agrochemicals, and is particularly concerning, as it may 

hinder the abilities of bees to forage for food or find their way back to the colony. Here, I 

focus on the fungicide Pristine® (active ingredients: 25.2% boscalid, 12.8% 

pyraclostrobin), which is sprayed on honey bee-pollinated crops during bloom and is 

known to poison bee mitochondria at ppm levels. First, I show that Pristine® impairs 

performance on an associative learning assay in the laboratory. Next, I show that 

Pristine® alters carbohydrate absorption in honey bees, providing a possible mechanism 

underlying this impaired learning performance. Finally, I demonstrate that Pristine® 

interacts with high temperatures to induce homing failure in exposed bees. My results 

raise concerns that this common fungicide may not be safe for pollinators and will be 

relevant to policymakers as they make decisions surrounding the regulation of fungicide 

use in agriculture.  
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CHAPTER 1 

THE EFFECTS OF ANTHROPOGENIC TOXINS ON HONEY BEE LEARNING: 

RESEARCH TRENDS AND SIGNIFICANCE 

ABSTRACT 

 Managed honey bees are experiencing high rates of colony loss, in part due to 

widespread exposure to agrochemicals and other environmental toxins. The ability to 

learn about relevant environmental stimuli is an important skill necessary for foraging 

and navigation, although it is sometimes impaired in bees that have been exposed to 

toxins or other stressors. Here, I review the effects of anthropogenic toxins (which I 

divide into five major classes: insecticides, acaricides, biopesticides, other agrochemicals, 

and other toxins) on learning performance in European honey bees. I discuss the general 

trends of these studies, including that neurotoxic insecticides are overwhelmingly the 

most well-studied, and that most studies focus on acute exposure of individual, adult bees 

to a single toxin. Protocols for “field-relevant” exposure vary widely among labs, and I 

make suggestions to aid in the standardization of future studies. I review the relevance of 

learning studies for toxicological risk assessment, concluding that they are valuable tools 

for assessing sublethal behavioral effects of toxins. Their inclusion in risk assessment 

studies would be an improvement over current procedures, which focus largely on 

lethality.  

INTRODUCTION 

 Insect pollinator populations are in decline globally (Potts et al., 2010). Colony 

loss rates for managed honey bees are also high both in the United States (Bruckner et al., 

2023) and worldwide (Gray et al., 2022). These losses are happening simultaneously with 
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a global increase in the demand for pollination services (Aizen et al., 2019). There is 

evidence that the production of certain fruit crops (such as apples, blueberries, and 

cherries) in the United States is already being limited by a lack of pollinators (Reilly et 

al., 2020). Future pollinator losses are expected to have devastating economic 

consequences (Lippert et al., 2021), with fruit, vegetable, and stimulant crops being 

especially vulnerable (Gallai et al., 2009).  

 Pollinators face a variety of threats, but the three most commonly implicated as 

causes of population declines include poor nutrition, parasites and pathogens, and 

agrochemicals (Goulson et al., 2015). These factors can interact to increase risk of 

individual or colony die-off (Mayack et al., 2022). This review will focus on the effects 

of agrochemicals and other environmental toxins on honey bees, a major area of concern 

in recent years (Johnson, 2015). Honey bees in the United States have been exposed to 

increasingly toxic levels of agrochemicals over the past 30 years (Douglas et al., 2020). 

Large varieties of pesticides are often found in hive products and bee-collected pollen 

(Mullin et al., 2010; Ostiguy et al., 2019). In some cases, large amounts of agrochemicals 

in hives have correlated with colony mortality (Traynor et al., 2016, 2021).  

 While agrochemicals and other toxins can be lethal for bees exposed to high 

enough doses, sublethal effects can occur at lower doses and cause substantial harm. 

Sublethal effects are defined as harmful physiological, developmental, or behavioral 

effects that occur in individuals that have survived exposure to a toxin (Desneux et al., 

2006). Physiologically, toxins can impair immune responses to pathogens (Glavinic et al., 

2019) and damage various organs (Catae et al., 2014; Faita et al., 2018; Zaluski et al., 

2017). Developmental sublethal effects can include reduced egg eclosion (Fine, 2020), 
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impaired egg and sperm viability (Milone & Tarpy, 2021), reduced queen emergence 

(Ricke et al., 2021), and general developmental delays (B. Li et al., 2022). Behavioral 

effects include altered locomotion (Aliouane et al., 2009; Delkash-Roudsari et al., 2020; 

Luo et al., 2021), impaired nestmate recognition (Cappa et al., 2019), and altered waggle 

dancing (Eiri & Nieh, 2012). This review will focus on impaired learning ability, another 

popular measure of behavioral sublethal effects (Siviter et al., 2018).  

 Learning has been tested in honey bees using a variety of methods; however, the 

proboscis extension reflex (PER) paradigm is the most popular for ecotoxicology studies. 

It is a form of classical Pavlovian conditioning (Rescorla, 1988) which utilizes the natural 

proboscis extension reflex of the honey bee—that is, a bee will reflexively extend its 

proboscis when a sugar solution is touched to its antennae (Bitterman et al., 1983; 

Takeda, 1961). In a typical experiment, an odor is used as a conditioned stimulus (CS) 

while sugar water solution acts as the unconditioned stimulus (US). Over a series of 

trials, a bee is exposed to the odor, and then the sugar solution is immediately brought to 

its antennae, eliciting the PER. A bee that has successfully learned the association will 

extend its proboscis in response to the odor alone, before the sugar solution is delivered 

(Figure 1.1A). Testing groups of individuals over a series of trials generates learning 

curves, which can then be compared across treatment groups (such as bees exposed to 

varying doses of a toxin; see Figure 1.1B for an example) (Matsumoto et al., 2012; Smith 

& Burden, 2014). In addition to the acquisition phase, memory is often tested at various 

time points post-conditioning (1 hour, 24 hours, 48 hours, etc.) by conducting one or two 

trials where the odor is presented without the reinforcing sugar solution. This technique 

has been adapted in countless ways to address a variety of topics, ranging from the 



  4 

cellular and molecular bases of learning and memory to the ecological associations 

between flowers and pollinators (Giurfa & Sandoz, 2012). The PER paradigm can be 

adapted to measure visual (Hori et al., 2006) and tactile (Scheiner et al., 1999) associative 

learning, as well as habituation (Braun & Bicker, 1992).  

 

 

Figure 1.1A. Schematic showing the steps of PER. Over a series of trials, bees are 

exposed to an odor, and then a sugar water solution is immediately touched to their 

antennae. Bees that successfully learn the association will extend their proboscis in 

response to the odor alone, without any exposure to sugar. B. Hypothetical acquisition 

curve for a PER experiment comparing a control group and a group exposed to a toxin. 

The line represents the percentage of bees showing a learned response (proboscis 

extension prior to sugar water presentation) for each trial. In this case, the control group 

achieves a higher learning rate than the treatment group, suggesting that the toxin is 

negatively impacting learning performance.  

 

 Scope of the study. In this review, I focus on European honey bee (Apis 

mellifera) studies that involve “anthropogenic” toxins, which are present in the 
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environment at higher levels than normal because of human activity. I focus on European 

honey bees because of their importance to pollination and because they have been subject 

to the greatest number of studies, enabling comparisons across toxin types. These 

compounds can be categorized into five major groups: insecticides, acaricides, 

biopesticides, other agrochemicals, and other toxins (see Figure 1.2 for a summary of the 

effects of each class). I focus on compounds mixed in with the unconditioned stimulus, 

applied topically, given orally, or injected, or, in the case of air pollutants, mixed in with 

the conditioned stimulus. The majority of these studies use the PER paradigm. I also 

cover studies that utilize other methods for testing associative learning such as T-mazes, 

shuttle boxes, and free-flying assays.  

 In each section, I note the studies that found effects at field-relevant toxin levels. 

As I discuss in the “General Trends” section below, the term “field-relevant” can be 

interpreted in a variety of different ways, but for the purposes of this review, I defer to 

the authors’ judgement regarding whether their dose and exposure protocol qualify as 

something bees could realistically be exposed to when foraging in the field.  
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Figure 1.2. Breakdown of studies devoted to each class of toxin. Of the three numbers in 

parentheses for each class, the first is the number of papers that examined the effects of 

that toxin class on honey bee learning (also proportional to the size of the box), the 

second is the number of papers that reported negative effects, and the third is the number 

that reported negative effects at field-relevant (according to the study’s authors) levels. 

Insecticides are classified based on Insecticide Resistance Action Committee (IRAC) 

mode of action groups. Studies focused on multiple toxins from different classes are 

counted more than once.  

 

 

EFFECTS OF ANTHROPOGENIC TOXINS ON LEARNING 

 Insecticides. Insecticides are pesticides designed specifically to kill insect pests in 

households and agriculture. Insecticides are sprayed on bee-pollinated crops and are often 

found at high levels in hive food stores (Johnson, 2015; Mullin et al., 2010; Ostiguy et 

al., 2019; Traynor et al., 2021). There are 32 major groups of insecticides classified 

according to their mode of action (Insecticide Resistance Action Committee [IRAC], 

2022). Of these 32 groups, nine have been tested for their effects on honey bee learning. 

Of these nine groups, six have modes of action related to insect nerves or muscles, two 
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are insect growth regulators, and one affects the midgut (IRAC Group 11, which for the 

purposes of this review is included in the “Biopesticides” section). Neonicotinoids (IRAC 

Group 4) and imidacloprid in particular, have been the focus of many studies on honey 

bee learning. In this section, I first summarize the studies concerning imidacloprid and 

other neonicotinoids, and then broaden the scope to include other classes of insecticides.  

 The effects of imidacloprid (neonicotinoid, IRAC Group 4, nicotinic 

acetylcholine receptor competitive modulators) on honey bee learning and memory are 

by far the most-well-documented. The majority of PER studies report some negative 

effect of imidacloprid on learning and/or memory (Decourtye et al., 2003, 2004a, 2004b,; 

Z. Li et al., 2019; Schwartz et al., 2021), including effects at field-relevant doses 

(Mengoni Goñalons & Farina, 2015, 2018; Mustard et al., 2020; Wright et al., 2015; 

Yang et al., 2012). A few studies show no effects of imidacloprid alone (Karahan et al., 

2015; Williamson et al., 2013; Williamson & Wright, 2013). The presence and magnitude 

of the negative effect can vary based on season, with summer bees being more prone to 

experiencing negative effects than winter bees, (Decourtye et al., 2003) and bee age, with 

young adult bees being more negatively affected than older bees (Mengoni Goñalons & 

Farina, 2015). Field-relevant larval exposure to imidacloprid also impairs PER learning 

(Yang et al., 2012). Other forms of learning, including habituation (Guez et al., 2001; 

Lambin et al., 2001) and free-flying associative learning (Decourtye et al., 2004b) are 

altered by imidacloprid exposure. Imidacloprid impairs bee performance in an aversive 

shuttle box assay (Delkash-Roudsari et al., 2020) and in an aversive paradigm that 

simulates predation (Zhang & Nieh, 2015). Some studies also show physiological 
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alterations associated with impaired learning, including changes in cytochrome oxidase 

activity (Decourtye et al., 2004a) and gene transcription (Z. Li et al., 2019) in the brain.  

 Other neonicotinoids, including acetamiprid (Thany et al., 2015), clothianidin 

(Mustard et al., 2020; Piiroinen & Goulson, 2016; Tison et al., 2019), dinotefuran 

(Mustard et al., 2020), thiacloprid (Begna & Jung, 2021; Tison et al., 2017), and 

thiamethoxam (Aliouane et al., 2009; Mustard et al., 2020; Papach et al., 2017; Wright et 

al., 2015) negatively affect PER learning and/or memory, including some compounds at 

field-relevant levels (Mustard et al., 2020; Piiroinen & Goulson, 2016; Wright et al., 

2015). A smaller number of studies report no effects of acetamiprid (Aliouane et al., 

2009; El Hassani et al., 2008), clothianidin (Alkassab & Kirchner, 2016), and 

thiamethoxam (El Hassani et al., 2008) on PER learning. In addition to these PER 

studies, Ludicke and Nieh (2020) report negative effects of a field-relevant dose of 

thiamethoxam on a T-maze learning task in which bees choose between sections of the 

maze illuminated with different colored lights for a food reward. Newer-generation 

pesticide groups including sulfoximines and butenolides have the same basic mechanism 

of action as neonicotinoids. Fewer studies have examined the effects of these chemicals 

on honey bee PER learning, although one study reports a negative effect of sulfoxaflor 

(Cartereau et al., 2022), while another finds no effect (Siviter et al., 2019). Two studies 

report negative effects of flupyradifurone (H. Bell et al., 2020; Hesselbach & Scheiner, 

2018), one at field-relevant levels (H. Bell et al., 2020).  

 Insecticides from a number of other classes that target the insect nervous system 

produce negative effects in PER learning assays. This includes carbamates (IRAC Group 

1, acetylcholinesterase inhibitors) (Abramson et al., 1999; Weick & Thorn, 2002), 
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organophosphates (IRAC Group 1, acetylcholinesterase inhibitors) (Z. Li et al., 2017; 

Urlacher et al., 2016), cyclodiene organochlorines (IRAC Group 2, GABA-gated chloride 

channel blockers) (Abramson et al., 1999; Decourtye et al., 2005), phenylpyrazoles 

(IRAC Group 2, GABA-gated chloride channel blockers) (Aliouane et al., 2009; 

Decourtye et al., 2005; El Hassani et al., 2005, 2009), pyrethroids (IRAC Group 3, 

sodium channel modulators) (Abramson et al., 1999; Decourtye et al., 2005; Liao et al., 

2018; Mamood & Waller, 1990; Ramirez-Romero et al., 2005; Taylor et al., 1987; Thany 

et al., 2015), and pyridine azomethine derivatives (IRAC Group 9, chordotonal organ 

TRPV channel modulators) (Abramson et al., 2012). Most of these classes have reports of 

negative effects at field-relevant levels as well, including carbamates (Abramson et al., 

1999), organophosphates (Urlacher et al., 2016), cyclodiene organochlorines (Abramson 

et al., 1999), and pyrethroids (Abramson et al., 1999; Ramirez-Romero et al., 2005).  

One study reports a positive effect of injection of the organophosphate trichlorfon on 

PER learning (Shapira et al., 2001). Additionally, fipronil (phenylpyrazole) produces 

negative effects on PER learning with a tactile instead of olfactory stimulus (Bernadou et 

al., 2009). Ethion (organophosphate) impairs learning performance in an aversive shuttle 

box assay (Delkash-Roudsari et al., 2020).  

 Only a few non-neuroactive or unknown mechanism of action (MOA) insecticides 

have been tested for effects on honey bee learning. The insect growth regulators 

diflubenzuron (IRAC Group 15, inhibitors of chitin biosynthesis affecting CHS1) and 

tebufenozide (IRAC Group 18, ecdysone receptor agonists) both produce negative effects 

on PER learning at field-relevant levels (Abramson et al., 2004). Additionally, a field-
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relevant dose of dicofol (unknown MOA) produces negative effects on PER learning 

(Stone et al., 1997).  

 Acaricides. Acaricides are compounds used to control arachnid pests (mites and 

ticks). Although their mechanisms of action overlap considerably with insecticides, I 

discuss them separately here because they are widely used directly within honey bee 

colonies to control the parasitic mite Varroa destructor, and thus are often the most 

commonly-found chemicals in samples of wax, bee bread, and honey (Johnson, 2015; 

Mullin et al., 2010; Ostiguy et al., 2019; Traynor et al., 2021). Here, I discuss the effects 

of synthetic (e.g., coumaphos, fluvalinate, and amitraz, presented according to IRAC 

classifications) and botanically derived (e.g., formic acid, oxalic acid, thymol) acaricides.  

 Many synthetic acaricides produce negative effects on PER learning and/or 

memory, including coumaphos (IRAC Group 1, acetylcholinesterase inhibitors) (Gashout 

et al., 2020; Weick & Thorn, 2002; Williamson et al., 2013; Williamson & Wright, 

2013), fluvalinate (IRAC Group 3, sodium channel modulators) (Frost et al., 2013; 

Gashout et al., 2020; Taylor et al., 1987), and amitraz (Begna & Jung, 2021; Gashout et 

al., 2020), with effects at field-relevant levels reported for coumaphos (Williamson et al., 

2013; Williamson & Wright, 2013) and fluvalinate (Frost et al., 2013). A few studies 

report no effects of fluvalinate (Decourtye et al., 2005) and amitraz (Rix & Cutler, 2017) 

on PER learning, and one study reports no effect of fluvalinate on visual/aversive shuttle 

box learning (Colin et al., 2020).  

 Some botanically derived acaricides also produce negative effects on PER 

learning, including formic acid (Gashout et al., 2020) and thymol (Bonnafé et al., 2015, 

2018), with thymol producing negative effects at field-relevant levels (Bonnafé et al., 
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2018). One study reports that oxalic acid improves PER learning (S. Schneider et al., 

2012). Thymol also alters congruency between olfactory and gustatory stimuli in the PER 

assay (Chapuy et al., 2019).  

 Biopesticides. Biopesticides are agricultural pesticides based on living organisms 

and/or their products. They can be broken into three broad categories: naturally-occurring 

biochemicals acting through non-toxic mechanisms (botanically derived compounds, 

essential oils, etc.), microbial entomopathogens (live bacterial or fungal organisms), and 

plant-incorporated protectants from genetically-engineered plants (most commonly, Cry 

proteins originally from the bacterium Bacillus thuringiensis, Bt). They are often touted 

as pollinator-friendly alternatives to more traditional, synthetic pesticides, and their use 

has increased in recent years (Cappa et al., 2022). Here, I focus on Bt Cry toxins first, and 

then broaden the scope to consider a few other biopesticides.  

 Bt Cry proteins (IRAC Group 11, microbial disruptors of insect midgut 

membranes) are used to control lepidopteran and coleopteran pests via the production of 

lesions in the midgut epithelium. These proteins are expressed in the pollen of transgenic 

plants, which may be collected by bees (Johnson, 2015; Picard-Nizou et al., 1997). Most 

studies report no effects of Bt Cry toxins on PER learning (Dai et al., 2012, 2016; Han et 

al., 2010). The exception to this is Ramirez-Romero et al. (2008), which reports that 

Cry1AB alters PER extinction at field-relevant levels. Bt Cry toxins also produce no 

effects on visual T-maze learning (Han et al., 2010) or free-flying associative learning 

(Ramirez-Romero et al., 2005).  

 A few other biopesticides have been tested for their effects on honey bee learning. 

Bioganic®, a commercial formulation marketed for household pest control and composed 
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of a mixture of essential oils, produces negative effects on PER and free-flying 

associative learning at field-relevant levels (Abramson et al., 2006). Soybean Bowman 

Birk Inhibitor reduces PER learning, while Kunitz Soybean Trypsin Inhibitor has no 

effect (Pham‐Delègue et al., 2000). Cowpea trypsin inhibitor reduces PER and free-flying 

associative learning (Picard-Nizou et al., 1997). Hv1a/GNA, a fusion protein containing a 

calcium channel blocker from spider venom, produces no negative effects on PER 

learning (Nakasu et al., 2014). Beauveria bassiana, an entomopathogenic fungus that 

infects hosts via cuticle contact and is used in agriculture to control a wide range of pest 

species, produces no effects on PER associative learning. However, it does alter PER 

habituation, increasing the number of trials needed for habituation to occur (Carlesso et 

al., 2020).  

 Other agrochemicals. Fungicides are pesticides used to control fungal diseases 

in agriculture. These chemicals are commonly sprayed on bee-pollinated crops, 

sometimes during bloom, and have been widely found in various in-hive food stores 

(Johnson, 2015; Mullin et al., 2010; Ostiguy et al., 2019; Traynor et al., 2021). There are 

13 major groups of fungicides, targeting a wide range of biochemical processes in fungal 

cells (Fungicide Resistance Action Committee [FRAC], 2022). Representatives from two 

out of the 13 groups have been tested for their effects on honey bee learning. The first of 

these is prochloraz (FRAC code G1, targeting C14-demethylase in sterol biosynthesis), 

which causes faster extinction of PER learning (Decourtye et al., 2005). A formulation 

containing two active ingredients meant to interfere with cellular respiration (boscalid, 

FRAC code C2, targeting succinate dehydrogenase and pyraclostrobin, FRAC code C3, 
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targeting cytochrome bc1 at Qo site) produces negative effects on PER learning and 

memory at field-relevant levels (DesJardins et al., 2021).  

 Likewise, herbicides are commonly applied to bee-pollinated crops, and a wide 

variety of compounds have been found in hive food stores (Johnson, 2015; Mullin et al., 

2010; Ostiguy et al., 2019; Traynor et al., 2021). Only one herbicide, glyphosate (HRAC 

Group 9/inhibition of enolpyruvyl shikimate phosphate synthase), has been tested for 

effects on honey bee learning, representing one out of 26 major herbicide groups 

(Herbicide Resistance Action Committee [HRAC], 2022). Glyphosate produces negative 

effects on PER learning in young adult bees (Mengoni Goñalons & Farina, 2018). It 

impairs PER learning and memory in foraging-age bees at field-relevant levels (Herbert 

et al., 2014; Hernández et al., 2021; Luo et al., 2021). One study reports no effect of 

glyphosate on aversive shuttle box learning (Delkash-Roudsari et al., 2020).  

 Adjuvants can either be included in pesticide formulations (formulation 

adjuvants) or added to tank mixes together with pesticides (spray adjuvants). They are 

added to enhance the efficacy of the active ingredients. Although widely used, they are 

often assumed to be inert and are rarely tested for possible effects on pollinators, and 

their presence usually is not tested for in hive food stores (Mullin et al., 2015). While 

some studies described above did test the effects of whole formulations, I focus here on 

the one study that tested adjuvants by themselves, conducted by Ciarlo et al. (2012). This 

study tested multiple compounds from three major adjuvant classes (organosilicones, 

nonionic surfactants, and crop oil concentrates). Organosilicones have significant 

negative effects on PER learning, suggesting they may not be safe for pollinators (Mullin 
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et al., 2016). Nonionic surfactants have slight negative effects, and crop oil concentrates 

produce no effects.  

 Other toxins. A number of metals produce negative effects on PER learning at 

field-relevant levels, including selenium (Burden et al., 2016), lead (Monchanin et al., 

2021a, 2021b), copper, and arsenic (Monchanin et al., 2021b). Cadmium also produces 

negative effects at sublethal doses (Z. Li et al., 2022).  Learning is most severely 

impaired when bees are fed a combination of lead, copper, and arsenic, suggesting 

additive effects (Monchanin et al., 2021b). These metals may be present in the soil due to 

mining and industrial operations. They are taken up by plants, resulting in contaminated 

pollen and nectar, which is then collected by bees (Johnson, 2015).  

 Industrial air pollutants including diesel exhaust (containing carbon monoxide and 

nitrogen oxide gases) and ozone produce negative effects on PER learning at field-

relevant levels. The concerns regarding these chemicals are twofold. First, there is 

concern that these pollutants could mask floral volatiles used by honey bees to locate 

food sources when foraging, impairing odor recognition. This can be tested by mixing an 

air pollutant with the conditioned stimulus in PER learning, and indeed, this produces 

negative effects (Leonard et al., 2019). There is also concern that honey bees could be 

exposed to these chemicals outright, producing sublethal effects, possibly including 

impaired learning. When bees are exposed before conditioning, both diesel exhaust 

(Reitmayer et al., 2019) and ozone (Démares et al., 2022) produce negative effects on 

PER learning.  

 Microplastics are widely present in water and soil, and have been found in honey 

stores (Alma et al., 2023). One study examined the effects of both acute and chronic 
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consumption of microplastics on PER habituation and associative learning, and it reports 

no effects (Balzani et al., 2022).  

GENERAL TRENDS 

 Neurotoxic insecticides/acaricides are overwhelmingly the most well-studied. 

My review found 52 studies focused on compounds known to be toxic to arthropod 

nervous systems, 9 studies focused on other types of insecticides/acaricides, 10 studies 

focused on biopesticides, 5 studies on herbicides, 2 studies on fungicides, 1 study on 

spray adjuvants, 4 studies on metals, 3 studies on air pollutants, and 1 study on 

microplastics (some studies are counted more than once because they tested compounds 

from more than one of these classes). Most of the compounds tested produced some sort 

of negative effect, so importantly, direct neurotoxicity is not a prerequisite for negative 

effects on learning.  

 Many studies use acute, individual exposure rather than chronic and/or 

colony-level exposure. I found 43 studies that used acute, individual exposure (feeding 

individual bees a known amount of a toxin one time before conditioning or testing). This 

is compared to 24 studies that fed toxins to groups of adults in cages. In this case, a set 

concentration was usually provided in a sugar solution ad libitum over a period of several 

days. Eight studies exposed entire colonies to the toxin; this usually involved providing 

contaminated nectar or pollen over a period of days or weeks and then capturing adult 

foragers for learning tests. Presumably, each of these approaches comes with benefits and 

drawbacks. For example, an acute/individual exposure paradigm provides the benefit of 

being able to control the exact amount of toxin received and the life stage of the 

individual, while colony-level exposure is presumably more relevant to field conditions.  
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 Most studies look only at active ingredients, rather than formulations. 

Among agrochemical studies (not including adjuvants or genetically-modified crops), 12 

focused on commercial formulations, while 51 focused on active ingredients only. There 

are likely benefits and drawbacks to both approaches here as well. Focusing on active 

ingredients only may be prudent because the compounds themselves may become 

disassociated with their formulations by the time bees are exposed to them (e.g. in 

contaminated hive food stores). However, it may be short-sighted to completely ignore 

adjuvants and co-formulants, as these can also impair learning on their own (Ciarlo et al., 

2012).  

 Most studies only focus on adult exposure. I found 2 studies that exposed larvae 

to toxins (and then tested their learning capacities when they became adults), as opposed 

to 65 studies that exposed and tested adults and 8 studies that exposed entire colonies 

(and thus were not specific about which life stage was exposed). Exposure across a 

combination of life stages may be more relevant to field conditions and can lead to 

greater impairments than when bees are only exposed as adults (DesJardins et al., 2021); 

this should be a focus area for future studies.  

 Some studies looking at the synergistic effects of multiple pesticides on 

learning have been conducted, but not very many. Some studies have found negative 

effects of combinations of insecticides and acaricides on PER learning (Begna & Jung, 

2021; Colin et al., 2020; Williamson & Wright, 2013). One study found that a mixture of 

the neonicotinoid insecticide imidacloprid and the herbicide glyphosate impairs PER 

learning (Mengoni Goñalons & Farina, 2018). One study found that a mixture of four 

organophosphate insecticides produces no effect on learning (Al Naggar et al., 2015). 
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Another intriguing area of study has focused on synergistic effects between 

parasite/pathogen and pesticide exposure. The insecticides flupyradifurone and 

clothianidin impair PER learning when bees are also exposed to Nosema cerenae (H. Bell 

et al., 2020; Piiroinen & Goulson, 2016), and imidacloprid and Varroa destructor interact 

to produce negative effects on learning (Schwartz et al., 2021). As bees are likely to be 

exposed to complex mixtures of agrochemicals and other toxins inside hives (Mullin et 

al., 2010; Ostiguy et al., 2019), there should be an increased focus on testing the effects 

of field-relevant synergisms.  

 Methodological details vary widely between labs, which highlights the need 

to exercise caution when comparing results. Even a relatively “standardized” 

procedure such as PER (Barascou et al., 2021) is prone to methodological variations that 

can alter the outcome; previous reviews have raised this concern and called for more 

standardization across labs (Frost et al., 2012; Matsumoto et al., 2012; Smith & Burden, 

2014). Examples of such methodological variations include the number of trials during 

the acquisition phase, whether differential or absolute conditioning is used, the duration 

of the intertrial intervals, whether and when memory is tested, colony history (such as 

past acaricide treatments), the subspecies or genetic strain of honey bees tested, and 

season during which the experiment was conducted. Given this, it is generally advisable 

to refrain from directly comparing results among labs (or at least to exercise extreme 

caution when doing so), and the field should strive to adopt a more standardized set of 

methods. Previous reviews on the topic (Frost et al., 2012; De Stefano et al., 2014; 

Matsumoto et al., 2012; Smith & Burden, 2014) offer detailed suggestions for 
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standardizing PER procedures; I suggest referring to those when deciding on which 

procedures to adopt.  

 Many studies claim to expose bees to a dose or concentration that is field-

relevant, but define that in different ways. I found 16 studies that did not claim to test 

a dose or concentration bees would be likely to encounter in the real world; these studies 

usually just picked a sublethal dose/concentration by choosing a set fraction of the LD-50 

or LC-50. Thirty-nine studies claimed some degree of field relevance for their chosen 

dose or concentration, although the definition of that term varied. Some used the dose or 

concentration recommended by a governing body or manufacturer to control a particular 

pest. Some chose a dose or concentration that had been previously found in hive food 

products (e.g. bee bread, honey) or in bee bodies. Some chose a dose or concentration 

that had been found in nectar or pollen from treated crops. The three air pollutant studies 

chose concentrations that were likely to be present in polluted air.  

 When deciding on an exposure protocol that is field-relevant, factors that should 

be carefully considered include whether to use acute or chronic exposure, whether to 

expose individuals or groups (in cages or whole colonies), the life stage(s) during which 

exposure and testing occur, the administration method (oral via nectar or pollen, topical, 

etc.), and the dose itself. My recommendation for creating a truly field-relevant exposure 

protocol is to think carefully about methodological details and create an “exposure 

scenario” in which the combination of variables mimics a situation that bees may 

encounter in the field. For example, a field-relevant dose could be drawn from a study 

that measured pesticide residues in treated flowers, nectar, and/or bee-collected pollen 

(e.g. Graham et al., 2022). In this case, it may make more sense to focus on feeding a 
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single acute dose to individual adult foragers (or a series of doses corresponding to the 

length of the blooming period), directly mimicking a scenario in which they are foraging 

on treated crops. If drawing the field-relevant dose from a study that measured levels of 

toxins in hive food stores such as bee bread (e.g. Mullin et al., 2010; Ostiguy et al., 2019; 

Traynor et al., 2021), it would make sense to expose whole colonies over a longer period 

of time, perhaps via contaminated pollen patties, mimicking a scenario in which a 

generation of bees consumes contaminated food as larvae and young adults. Whatever the 

protocol, each factor should be explicitly described and justified.  

SIGNIFICANCE OF LEARNING STUDIES IN TOXIN RISK ASSESSMENT 

 Lab-based learning experiments are popular ways to test for behavioral sublethal 

effects because associative learning is necessary for foraging and navigation, which are 

critically important for colony function and survival. Bees are central place foragers, 

which means that they navigate to floral resources outside the colony and bring their 

products back home (W. Bell, 1990). Successful navigation requires bees to learn sensory 

cues from the environment and integrate these with motor outputs (Buehlmann et al., 

2020). Relevant sensory cues can be either visual or olfactory. Bees start their foraging 

lives by performing a series of orientation flights around the hive, through which they 

become extensively familiar with the surrounding visual landmarks (Capaldi & Dyer, 

1999). They use these landmarks to navigate home after foraging over long ranges (Pahl 

et al., 2011). Olfactory cues are used to navigate at shorter ranges to help bees home in on 

the correct location of either a floral patch or the colony (Chaffiol et al., 2005). As part of 

the forager recruitment process (which also includes the waggle dance), bees learn floral 

odors from their nestmates in the hive. These cues help them navigate to the same floral 
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patch during their own trip (Arenas et al., 2007). This information suggests that olfactory 

and visual learning experiments may be predictive of foraging and navigation behaviors 

in the field, and indeed, PER learning performance correlates with real-world foraging 

performance (Cabirol et al., 2018). Bees are also able to transfer knowledge of odors they 

have learned in the real world to the PER paradigm in the laboratory (Gerber et al., 

1996).  

 Many of the compounds discussed above that impair learning performance in the 

lab also produce negative effects on foraging and navigation behaviors in the field. Some 

neonicotinoids reduce the number of foraging trips made by individual foragers (Ohlinger 

et al., 2022; C. Schneider et al., 2012; Tison et al., 2020). Neonicotinoids can also 

increase the duration of foraging trips, with treated bees taking longer to return to the 

hive than controls (C. Schneider et al., 2012; Yang et al., 2008). Neonicotinoids can also 

impair homing ability, with neonicotinoid-exposed bees returning at lower rates than 

controls in experiments (Fischer et al., 2014; Henry et al., 2012). The phenylpyrazole 

insecticide fipronil also decreases foraging trips (Decourtye et al., 2011). Pyrethroid 

insecticides can also produce negative effects, with deltamethrin impairing homing 

ability (Van Dame et al., 1995) and fluvalinate altering duration of foraging trips (Colin 

et al., 2021). In addition to these insecticides, the herbicide glyphosate (Sol Balbuena et 

al., 2015) increases the average duration of homing flights in treated bees when compared 

to controls. Ultimately, it has been suggested that bees are so vulnerable to environmental 

stressors because central place foraging requires relatively advanced cognitive abilities, 

which can be negatively affected even at low doses of toxins (Klein et al., 2017).  
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 Given that lab-based learning experiments seem to be relevant to bee behaviors in 

the real world (Henry et al., 2015), the question becomes, should they be used when 

assessing pesticide risks to bees, and if so, how? There have been calls to include more 

nuanced testing for sublethal effects of pesticides on bees (Barascou et al., 2021; 

Decourtye et al., 2013; Fisher, 2021). Learning experiments played a (somewhat indirect) 

role in the banning of three neonicotinoids in Europe. Initial learning experiments (e.g., 

Decourtye et al., 2004a) raised concerns that this class of pesticides could be especially 

harmful to bees. This led to field-based studies on foraging and navigation (e.g., Henry et 

al., 2012; C. Schneider et al., 2012). It was ultimately these studies that garnered the 

attention of activists and policymakers and led to a ban on the neonicotinoids 

imidacloprid, thiamethoxam, and clothianidin in the European Union (Auteri et al., 2017; 

Sgolastra et al., 2020).  

 Overall, lab-based learning studies are a relatively easy way to quantify 

behavioral sublethal effects of environmental toxins in honey bees, as they typically 

require less resources than field studies and allow for more control over extraneous 

variables. Despite this, some have called the ecological relevance of these experiments 

into question (Barascou et al., 2021). Studies that show negative effects of toxins on 

foraging and navigation behaviors in the field might be more likely to get the attention of 

policymakers. PER assays would perhaps be most effective if they were incorporated into 

lower-tier risk assessments with explicitly standardized procedures and field-relevant 

exposure protocols. This would be an improvement over current lower-tier studies, which 

mostly focus on LD-50s (Barascou et al., 2021). If PER experiments produce negative 

effects, then higher tiers could include foraging and/or navigation experiments in the 
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field. This approach should be explored as a possible way to incorporate important 

behavioral sublethal effects into risk assessment procedures.  

CONCLUSION 

 Roughly 80 studies have examined the effects of anthropogenic toxins on honey 

bee learning, finding effects of a variety of agrochemicals, biopesticides, metals, and air 

pollutants. Learning experiments are a relatively easy way to test for behavioral sublethal 

effects, and can correlate with negative effects on foraging and navigation behaviors in 

the field. These studies should be further incorporated into procedures for toxin risk 

assessment, including to assess a more diverse set of toxins for behavioral sublethal 

effects. Relatively few studies have focused on toxins such as fungicides and metals, 

although bees may be as likely or even more likely to encounter them as they are 

insecticides (fungicides are sometimes sprayed during bloom, for example, increasing the 

probability that foraging bees are exposed). Efforts should also be made to test for 

synergisms between compounds that are likely to be encountered together in the field.  
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CHAPTER 2 

A COMMON FUNGICIDE, PRISTINE®, IMPAIRS OLFACTORY ASSOCIATIVE 

LEARNING PERFORMANCE IN HONEY BEES (APIS MELLIFERA) 

ABSTRACT 

 Although fungicides were previously considered to be safe for important 

agricultural pollinators such as honey bees, recent evidence has shown that they can 

cause a number of behavioral and physiological sublethal effects. Here, I focus on the 

fungicide Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin), which is 

sprayed during the blooming period on a variety of crops and is known to affect honey 

bee mitochondria at field-relevant levels. To date, no study has tested the effects of a 

field-relevant concentration of a fungicide on associative learning ability in honey bees. I 

tested whether chronic, colony-level exposure at field-relevant and higher concentrations 

of Pristine® impairs performance on the proboscis extension reflex (PER) paradigm, an 

associative learning task. Learning performance was reduced at higher field-relevant 

concentrations of Pristine®. The reductions in learning performance could not be 

explained by effects on hunger or motivation, as sucrose responsiveness was not affected 

by Pristine® exposure. To determine whether Pristine®‘s negative effects on learning 

performance were mediated at a specific life stage, I conducted a cross-fostering 

experiment that exposed bees to the fungicide either only as larvae, only as adults, or 

during both stages. I found that exposure across the entire life was necessary to 

significantly reduce learning performance, although non-significant reductions occurred 

when bees were exposed during just one stage. My study provides strong evidence that 

Pristine® has significant sublethal effects on learning performance. As associative 
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learning is a necessary ability for foraging, my results raise concerns that Pristine® could 

impair foraging abilities and substantially weaken colony health.  

INTRODUCTION 

 Insect pollinator populations are declining globally (Sánchez-Bayo & Wyckhuys, 

2019), threatening long-term food security. Thirty-five percent of global food production 

comes from pollinator-dependent crops (Klein et al., 2007), and animal pollination is 

valued at $14.2–23.8 billion in the United States (Chopra et al., 2015). There has been 

particular concern regarding the supply of domesticated honey bees, which is growing 

globally, but more slowly than needed for pollination (Aizen & Harder, 2009). Honey bee 

population declines in the United States and Europe have caused concern in recent years 

(Gray et al., 2020; Kulhanek et al., 2017). Pathogens and parasites (Genersch, 2010), 

poor nutrition (Naug, 2009), and agrochemical exposure (Mullin et al., 2010) have all 

been implicated as direct contributors to colony losses. It is likely that interacting 

stressors are to blame (Goulson et al., 2015; Potts et al., 2010). However, agrochemicals 

in particular have caused concern in the scientific community, as honey bees may be 

more sensitive than other insects due to a relative lack of detoxification enzymes 

(Claudianos et al., 2006).  

 The term “sublethal effects” describes harmful physiological and behavioral 

effects of agrochemicals that occur in individuals that have survived exposure (Desneux 

et al., 2006). These effects can weaken honey bee health and contribute to colony loss 

over time. Sublethal effects shown to be induced by agrochemicals include altered 

development, reduced fecundity, altered hygienic and foraging behaviors (Wu-Smart & 

Spivak, 2016), reduced immune function (Di Prisco et al., 2013), lowered fecundity (Wu-
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Smart & Spivak, 2016), impaired mobility (Lambin et al., 2001), impaired navigation 

ability (Henry et al., 2012), and impaired communication (Eiri & Nieh, 2012).  

 Insecticides in particular can impair bees' performance in olfactory associative 

learning tasks, disrupting their ability or motivation to learn to associate a novel odor 

with a food reward (see Siviter et al. (2018) for a meta-analysis). Some insecticides can 

also alter bees’ motivation or ability to extend their proboscis in response to sucrose (Eiri 

& Nieh, 2012), a main phagostimulatory component of floral nectar (Wykes, 1952). Most 

insecticides target various components of the insect nervous system, providing a potential 

mechanism for the effects on learning behavior and sucrose responsiveness (Belzunces et 

al., 2012). For example, the effects of neonicotinoids on learning performance have been 

particularly well-studied (e.g. Aliouane et al., 2009; Decourtye et al., 2004, 2005).  

 Bees are also exposed to other agrochemicals while foraging, including fungicides 

(Mullin et al., 2010). Short-term toxicity tests for fungicides have suggested that they are 

safe for bees (Ladurner et al., 2005). However, standard toxicity tests do not take 

sublethal effects into account (Desneux et al., 2006). Sublethal exposure to fungicides 

may cause significant stress to honey bees, as residues found in hives have been 

correlated with colony decline (Simon-Delso et al., 2014). Here, I focus on the fungicide 

Pristine®, which is licensed for use on a variety of crops pollinated by honey bees 

including bulb vegetables, berries, pome and stone fruits, and tree nuts. Of significant 

importance is that Pristine® is registered for use on almonds during the bloom period 

(BASF, 2019). More than 70 percent of all commercial honey bee hives in the US are 

brought to California for almond pollination during bloom each year (Lee et al., 2019). 

Residues of the active ingredients of Pristine®, boscalid and pyraclostrobin, have been 
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found in bee hives in the US and Europe (Mullin et al., 2010; Simon-Delso et al., 2014). 

Boscalid and pyraclostrobin inhibit respiration in fungal cells (Earley et al., 2012), and 

Pristine® also directly inhibits honey bee mitochondrial function in vitro (Campbell et al., 

2016). When consumed with pollen, Pristine® interferes with protein digestion and 

increases virus titers (DeGrandi-Hoffman et al., 2015). When consumed in pollen at 

field-realistic levels, it reduces thorax mass (Glass et al., 2021), colony population size 

and worker lifespan, and causes earlier foraging that is more focused on pollen-collection 

(Fisher et al., 2021a). The latter finding suggests that the toxic effects may be at least 

partially behaviorally-mediated.  

 Here, I evaluate how chronic exposure of honey bees to Pristine® affects learning 

performance and sucrose responsiveness. The proboscis extension reflex (PER) 

paradigm, which measures how well bees learn to associate a neutral odor with a sucrose 

reward (Bitterman et al., 1983; Smith & Burden, 2014), is well-suited to measure the 

learning abilities in bees exposed to agrochemicals (Pham-Delègue et al., 2002). Some 

non-insecticide agrochemicals, such as spray adjuvants (Ciarlo et al., 2012), herbicides 

(Farina et al., 2019), and one other fungicide (prochloraz) (Decourtye et al., 2005), as 

well as some heavy metals (Burden et al., 2016, 2019), have been shown to affect 

associative learning and sucrose responsiveness. I tested olfactory associative learning 

and sucrose responsiveness in individual bees from colonies that chronically consumed 

Pristine®-contaminated pollen, mimicking natural exposure in the field. I also 

investigated whether the behavioral effects of Pristine® on honey bees were mediated at 

the larval or adult stage, or both.  
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METHODS 

 Honey bee colonies and fungicide exposure. Initiation and fungicide treatment 

of the experimental colonies is described in detail in Fisher et al. (2021a); the basic 

protocols are presented here. In April 2018, forty 1.36 kg Italian honey bee (Apis 

mellifera linguistica) packages (Pendell Apiaries, Inc., Stonyford, CA) were used to 

initiate colonies in Apimaye insulated hives (Kaftan LLC, Tempe, AZ) at the Arizona 

State University Bee Lab in Mesa, AZ (33.293173, −111.684520). To prevent exposure 

to stored agrochemicals, each colony was initially stocked with five wooden frames with 

plastic cell foundation, which the workers used to construct new comb. Colonies were 

supplied with 30 percent sucrose solution ad libitum for the first three weeks after 

initiation to help them build combs. Pollen traps were placed internally over the hive 

entrance to restrict the amount of pollen that workers could bring inside. Pollen patties 

(50 g) containing a mixture of pollen (30.6%), sucrose (30.6%), fondant sugar (30.6%), 

and water (8.2%) were placed in a Petri dish inside each hive. A week before fungicide 

treatments began, the hives were equalized so they each had five drawn combs and 

approximately equal adult populations. As colonies continued to grow, additional frames 

with bare, plastic cell foundation were provided to minimize possible exposure to 

chemicals in old wax.  

 The fungicide treatments began in May 2018, one month after colony initiation. 

Pristine® (BASF Corporation, Research Triangle Park, NC) was dissolved in deionized 

water and mixed into pollen patties at the following concentrations: 0.23 ppm, 2.3 ppm, 

23, ppm, and 230 ppm (this replaced the 8.2% water described above in pollen patty 

preparation). These concentrations were meant to bracket those measured in corbicular 
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pollen collected from bees foraging in Pristine®-treated almond orchards (which ranged 

from 3.13 ppm to 24 ppm, as measured by Fisher et al., 2021a). The quantity of the 

pollen patty consumed was measured at least weekly (Fisher et al., 2021a). The per larva 

and per adult doses of Pristine®, boscalid, and pyraclostrobin were calculated by Fisher et 

al. (2021a) and are shown in Table 2.1. A fifth group, the control, received pollen patties 

with only deionized water. Each of the five treatment groups contained eight hives. Hives 

were continually monitored and by very briefly looking inside the hive every other day to 

check the amount of pollen left in the patty. Pollen patties were replaced as soon as they 

were consumed, or at least weekly to maintain freshness.  

 General olfactory associative learning. Preparation and conditioning methods 

were based on those described in Smith & Burden (2014). I sampled from 20 hives (out 

of the 40 total involved in the larger experiment). Among each treatment group, each hive 

was assigned a number from one through eight, and a pseudo-random number generator 

(random.org) was used to randomly select four numbers within that range, which 

corresponded to the hives used in the experiment. Of the 20 hives selected, three showed 

poor brood production and foraging, and because of this, they were not sampled from 

during the learning experiment. Thus, a total of 17 hives were used (3–4 per treatment 

group). Ten bees were trained at a time; they were collected at the hive entrance as they 

returned from foraging trips and immediately brought into the lab and anesthetized on 

ice. They were then harnessed in plastic drinking straws (3 cm tall, 0.9 cm inner 

diameter) and held in place by strips of duct tape (0.2 × 6 cm) so that only their antennae 

and mouthparts were moveable. Each individual was then fed 3–5 μL of 1.0 M sucrose 

one time and allowed to rest for 45 min at room temperature. This round of feeding 
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served to keep them from depleting their energy reserves during the acclimation period 

(Smith & Burden, 2014). After the resting period, the bees’ antennae were stimulated 

with a droplet of 1.5 M sucrose. Bees that did not extend their proboscis in response to 

antennal stimulation were considered not sufficiently motivated to learn and were 

removed from the experiment prior to its start.  

 I used a discrimination conditioning procedure to evaluate associative learning 

and reduce the possibility that changes in behavior were due to non-associative 

mechanisms (Benatar et al., 1995). Conditioned Stimuli (CS) were always odors. Thus, I 

included both a CS+, which was followed by reinforcement with a sucrose droplet, and a 

CS−, which was not. The chemicals 1-hexanol (Sigma-Aldrich, St. Louis, MO) and 2-

octanone (Sigma-Aldrich, St. Louis, MO) were counterbalanced as the CS+ and CS− 

odors. Prior to training, strips of filter paper (Sigma-Aldrich, St. Louis, MO) containing 

0.7 μL of the target odor were placed into glass cartridges (1 cc tuberculin syringe 

barrels, BD Medical, Franklin Lakes, NJ). Odor cartridges were changed after every fifth 

trial, according to standard protocols (Smith & Burden, 2014).  

 The plexiglass conditioning arena consisted of a circular stand on which a harness 

could be placed, a piece of modeling clay on which the odor tube could be mounted in 

front of the bee, and an exhaust system (hooked up to the laboratory vacuum system with 

dryer tubing) to prevent odors from lingering. The odor delivery system consisted of an 

air tube that could be hooked up to an odor cartridge and automated via a programmable 

logic controller (Automation-Direct, Cumming, GA) to deliver the odor at the correct 

times. While not being actively trained, bees were kept in a staging area approximately 

30 cm from the training arena.  
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 During acquisition trials with the CS+ odor, a bee was placed into the arena and 

allowed to sit for 25 s. After that, an air pulse (flowing at 7 mL/s) was directed through 

the odor cartridge and toward the bee for 4 s. During the last second of odor delivery, the 

bee was manually fed 0.4 μL of 1.5 M sucrose using a 0.2 mL Gilmont syringe (Cole-

Parmer, Vernon Hills, IL). If the bee extended her proboscis after odor delivery but 

before sucrose presentation, she had learned successfully (denoted by a ‘1’ in my scoring 

system). If a bee extended her proboscis after sucrose presentation, she had responded to 

sucrose but not to the odor (denoted by a ‘0’ in my scoring system). Bees that did not 

extend their proboscis to either odor or sucrose were scored with an ‘NA’.  

 After sucrose presentation, the bee was left in the arena for another 30 s, allowing 

her to form initial memories before being moved back to the staging area. This 1-min 

process was repeated for each of the other nine bees before starting the second trial with 

the first bee, allowing for a 10-min inter-trial interval.  

 During unrewarded trials, the process was the same as above, except the bee was 

not fed sucrose. The Gilmont syringe was still held close to the bees’ heads during the 

time when sucrose would normally be fed in order to reduce changes in stimulation as 

much as possible.  
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 Pristine Boscalid Pyraclostrobin 

    Pollen patty, 

ppm 

0.23 0.06 0.03 

Per larva dose, ng 0.086 0.022 0.011 

Per adult dose, ng 6.9 1.73 0.88 

    Pollen patty, 

ppm 

2.3 0.6 0.3 

Per larva dose, ng 1.0 0.25 0.13 

Per adult dose, ng 79.7 20.1 10.2 

    Pollen patty, 

ppm 

23 6 3 

Per larva dose, ng 8.3 2.09 1.06 

Per adult dose, ng 663 167.1 84.9 

    Pollen patty, 

ppm 

230 60 30 

Per larva dose, ng 89.9 22.7 11.5 

Per adult dose, ng 7,194 1813 921 

 

Table 2.1. Concentrations of Pristine®, boscalid, and pyraclostrobin in the pollen patties 

for each treatment group, along with the calculated per larva and per adult dose (Fisher et 

al., 2021). 

 

 Sucrose responsiveness. Changes in learning performance due to fungicide 

treatment could be caused by changes in taste responsiveness rather than impaired 

associative learning per se. To test this, bees were sampled from the same 17 hives that 

were used in the first experiment. Bee collection and harnessing protocols were the same 
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as those described above. After the 45-min resting period, bees were exposed via 

antennal stimulation to 1–2 μL of increasing concentrations of sucrose: 0.1, 0.3, 1, 3, 10, 

and 30 percent solutions (w/v in deionized water). They were not allowed to feed. 

Deionized water was presented after each sucrose concentration, with 8-min intervals 

between each trial. For each sucrose or water presentation, I recorded whether the bee 

extended its proboscis (denoted by a ‘1’) or did not (denoted by a ‘0’). For data analysis, 

each bee was given a “sensitivity score” for each sucrose concentration: response to 

sucrose minus response to the following water presentation. This gave me a range of 

values of either ‘0’ or ‘1’ (A ‘-1’ value was also theoretically possible; however, this was 

not actually observed). A ‘0’ value indicated that a bee had responded to both the sucrose 

and water, or neither the sucrose nor the water. A ‘1’ value indicated that an individual 

had responded to the particular concentration of sucrose but not the water.  

 Cross-fostering olfactory associative learning. For this experiment, bees were 

exposed to Pristine® either only as larvae, only as adults, during both developmental 

stages, or not at all, using a cross-fostering design (Fisher et al., 2021b). Because adults 

consume much more pollen than larvae and therefore receive a much greater dose (Table 

1), I hypothesized that effects of Pristine® on learning would stem from exposure during 

the adult stage. To rigorously test this hypothesis, I used a supra-field concentration of 

Pristine®. Randomly-chosen capped brood frames from three control (0 ppm Pristine®) 

hives and three hives treated with 230 ppm Pristine® were brought into the lab and placed 

in a wire mesh frame cage (L x W x H: 53.3 × 5.1 × 27.9 cm) in an incubator (34 °C, 

90% relative humidity) until ~600 adults had emerged from each frame. The adults were 

marked on the mesonotum with a paint color corresponding to their hive of origin.  
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 The bees from the control and 230 ppm Pristine® colonies were each divided into 

four subsets of ~450 individuals. Two control colonies each received ~450 bees from 

control colonies and ~450 bees that had been reared as larvae in the 230 ppm Pristine® 

treatment group. Two colonies from the 230 ppm treatment group each received ~450 

bees that had been reared as larvae in control colonies and ~450 bees that had been reared 

as larvae in colonies in the 230 ppm Pristine® treatment group. This resulted in four 

treatment groups that are named according to their larval and adult Pristine® exposure: 

larval control/adult control, larval control/adult Pristine®, larval Pristine®/adult Pristine®, 

and larval Pristine®/adult control. The learning abilities of bees from these four treatment 

groups were tested once they began foraging outside the hive, using the same protocol as 

described above.  

 Statistical analyses. All data were analyzed in R version 3.6.2 (R Core Team, 

2019). Learning data were analyzed using generalized linear mixed effects models and 

the lme4 package (Bates et al., 2015). Trial, hive, and treatment group were fixed effects 

and individual was a random effect. For the five-concentration learning experiment, 

another fixed effect was added—season—in order to determine whether there were any 

differences between the bees tested in December and March. Season and hive did not 

have significant effects, so these variables were pooled in the model. For post-hoc 

pairwise comparisons, the estimated marginal means were calculated using the emmeans 

package (Lenth, 2019). P-values were adjusted using the Tukey method for multiple 

comparisons.  

 For the sucrose response data, I considered that a bee had responded to a 

particular sucrose concentration if she extended her proboscis in response to that 
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concentration, but not to the water presented immediately afterward. Thus, I subtracted 

water responses from the corresponding sucrose responses and used this “sensitivity 

score” to run a generalized linear mixed effects model. Sucrose concentration, treatment 

group, and season were fixed effects, and individual was a random effect. The season 

effect revealed a significant difference between the January–February and March–May 

experiments, so two models were constructed to analyze each experiment separately.  

RESULTS 

 General olfactory associative learning. Colony-level Pristine® consumption 

affected performance (proportion of bees that successfully learned the odor-reward 

association across eight acquisition trials) on my PER associative learning assay (χ2=7.9, 

p=0.0050). By the eighth acquisition trial, control bees performed, on average, 20% 

better than bees consuming pollen containing the 23 ppm and 230 ppm Pristine® 

concentrations. (Figure 2.1A). Hive and season did not significantly affect results. Bees 

rarely responded to the CS− odor, and there were no trends across trial or treatment 

group. Pristine®-exposed bees also responded to the odor less often than control bees 

throughout the unrewarded test trials (χ2=17, p<0.001, Figure 2.1B). Post-hoc pairwise 

comparisons showed that the 23 ppm and 230 ppm treatment groups performed 

significantly worse than the control treatments during the test phase.  

 Sucrose responsiveness. Here, I measured the proportion of bees that responded 

to ascending sucrose concentrations, corrected for their responses to water. An initial 

model revealed significant differences (χ2=5.9, p=0.015) between results obtained in 

January/February versus May/June, corroborating earlier results that show seasonal 

variation in forager sucrose responsiveness (Scheiner et al., 2003). Because of this, the 
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data from the two time periods were analyzed separately. Pristine® exposure did not have 

an effect in either January/February (χ2=1.7, p=0.19, Figure 2.2A) or May/June (χ2=0.62, 

p=0.43, Figure 2.2B). Thus, regardless of season, Pristine® consumption did not affect 

sucrose responsiveness, suggesting that the differences in associative learning ability 

between treatment groups were not caused by effects on sucrose responsiveness.  

 Cross-fostering olfactory associative learning. Performance (proportion of bees 

that successfully learned the odor-reward association) in the PER olfactory learning assay 

differed significantly among treatment groups during both the acquisition (χ2=8.95, 

p=0.030, Figure 2.3A) and test phases (χ2=10.2, p=0.017, Figure 2.3B). Hive did not 

significantly affect the results. Post-hoc pairwise comparisons revealed that the control 

group (larval control/adult control) performed better than the bees exposed to Pristine® at 

both larval and adult stages (larval 230 ppm/adult 230 ppm). Bees exposed during just the 

larval or adult stage performed intermediate to the two constant treatment groups, but 

these groups did not differ significantly from either treatment group.  
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Figure 2.1. Proportion of bees chronically exposed to Pristine® fungicide showing 

learning in a PER olfactory learning assay, during (A) the acquisition phase and (B) the 

test phase. N=33-37 individuals per treatment group. In (A), solid lines indicate responses 

to the CS+, while dashed lines represent responses to the CS-. Asterisks indicate that a 

treatment group is significantly different from the control.  
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Figure 2.2. Sensitivity to different sucrose concentrations for bees chronically exposed to 

five concentrations of Pristine® fungicide. Bees were tested in either January-February 

(A) or May-June (B). Graphs represent sensitivity score—proportion of bees responding 

to sucrose minus the proportion responding to water presented immediately afterward. 

For both graphs, N=19-23 individuals per treatment group. 
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Figure 2.3. Proportion of bees exposed to Pristine® fungicide either as larvae, adults, 

neither, or both showing learned responses in a PER olfactory learning assay, during (A) 

the acquisition phase and (B) the test phase. In the legend, each treatment group is 

indicated in the following manner:  larval treatment-adult treatment. N=19-21 individuals 

per treatment group. In (A), solid lines indicate responses to the CS+, while dashed lines 

represent responses to the CS-. Lowercase letters on the right indicate statistically 

significant differences between treatment groups.  
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DISCUSSION 

 The issue of sublethal effects of agrochemicals, including fungicides, on 

pollinators is very concerning, with recent studies demonstrating that field application 

levels previously thought of as non-toxic may have significant longer-term impact on 

honey bee health (Fisher et al., 2021a). My study demonstrates an important impact of 

field-relevant doses of the fungicide Pristine® on olfactory associative learning. I found 

that consumption of pollen containing 23 and 230 ppm of the fungicide in field colonies 

reduced olfactory associative learning performance with no concurrent effect on sucrose 

responsiveness. The impaired associative learning caused by Pristine® consumption was 

thus not due to a simple suppression of the ability to taste sucrose or reduced motivation 

to feed.  

 Reduced learning ability, as demonstrated here, can negatively impact colony 

functioning through impairing foraging or navigation ability in exposed bees. It is well-

documented that olfactory associative learning is necessary to remember the locations of 

food sources (Gerber et al., 1996; Kirchner & Grasser, 1998; von Frisch, 1993). Some 

agrochemicals that can impair learning can also negatively impact navigation or foraging 

ability (Fischer et al., 2014; Henry et al., 2012; Schneider et al., 2012; Sol Balbuena et 

al., 2015), further suggesting that impaired associative learning performance could 

damage proper colony functioning by impairing the bees’ ability to find and 

communicate the locations of food resources.  

 Although the effects of neuroactive insecticides on bee associative learning 

performance are well-documented, only one other study showed impaired learning as the 

result of exposure to a fungicide, prochloraz (Decourtye et al., 2005). Prochloraz acts by 
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a completely different mechanism than boscalid and pyraclostrobin, as it is an inhibitor of 

cytochrome P450 enzymes and is considered an endocrine disruptor (Vinggaard et al., 

2006).  

 A variety of other agrochemicals beyond fungicides impair PER learning in honey 

bees (Siviter et al., 2018). Many of these are insecticides that are designed to be 

neuroactive, specifically to affect cholinergic transmission, which provides a logical 

underlying mechanism for their effects on learning, as acetylcholine is the main 

neurotransmitter involved in learning and memory in the honey bee (Lozano et al., 2001). 

Ingestion of a few other agrochemicals that are not designed to be neuroactive has been 

shown to affect learning, including organosilicone agricultural spray adjuvants (Ciarlo et 

al., 2012), the fungicide prochloraz (Decourtye et al., 2005), and the herbicide glyphosate 

(Farina et al., 2019). The heavy metal selenium also negatively affects learning (Burden 

et al., 2016). The mechanisms underlying these effects remain mostly unknown. 

Regardless, these studies reveal that a wide variety of chemicals, including those that are 

not meant to target the insect nervous system, can cause negative sublethal effects on 

learning in honey bees.  

 A key question is whether the observed toxic and behavioral effects of Pristine® 

on honey bees were mediated at the larval or adult stage (or both). Young adults eat a 

substantial amount of pollen, while larvae consume only a few mg late in development 

(Babendreier et al., 2004; Crailsheim et al., 1992), suggesting that adult exposure is the 

most critical, at least for Pristine® in pollen. Young adults feed larvae by producing 

glandular secretions that could contain consumed fungicides. However, concentrations of 

boscalid and pyraclostrobin were undetectable in royal jelly produced by nurse bees fed 
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Pristine®, suggesting that the active ingredients in Pristine® are not passed on to larvae in 

the brood food (DeGrandi-Hoffman et al., 2013). Also, Fisher et al. (2021a) reported no 

effects of consumption of Pristine® on colony egg and brood levels. Therefore, I 

hypothesized that Pristine® exposure exerts its negative effects on honey bee colonies 

only at the adult stage. To rigorously test this hypothesis, I reared bees in colonies 

provided Pristine® only in the larval, only in the adult, or in both stages, testing effects on 

learning capabilities of adult foraging-age workers. I used a supra-field concentration 

(230 ppm) of Pristine®, as peak exposures are likely higher than average concentrations, 

and my goal was to exclude the possibility that larvae are negatively impacted by colonial 

Pristine® consumption in pollen. I found that consumption of pollen containing 230 ppm 

Pristine® during both the larval and adult life stages significantly reduced learning ability, 

while non-significant reductions occurred when bees were exposed during only one life 

stage. These results suggest that the sublethal behavioral effects of Pristine® are mediated 

at both the larval and adult life stages. At present it is unclear whether such effects are 

due to the consumption of Pristine® by the larvae, or to the effects of Pristine® 

consumption on the feeding and care provided to the larvae by the adults.  

 The findings of this study lead naturally to the question of mechanisms for 

impaired learning. Other agrochemicals that can impair associative learning, such as 

imidacloprid (Eiri & Nieh, 2012; Lambin et al., 2001), thiamethoxam (Aliouane et al., 

2009; Démares et al., 2016), flupyradifurone (Hesselbach & Scheiner, 2018), and 

fluvalinate (Frost et al., 2013) have been shown simultaneously to affect sucrose 

responsiveness in honey bees. Sucrose is the unconditioned stimulus in the PER 

paradigm, and individual differences in sucrose responsiveness correlate with 
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performances during the assay (Scheiner et al., 2004). However, as Pristine® does not 

appear to affect sucrose responsiveness, there is likely some other mechanism behind its 

effects on learning.  

 Pristine® may impair learning indirectly through effects on nutrient absorption via 

the gut. Ultimately, impaired nutrient absorption could impact learning either by 

interfering with post-ingestive feedback mechanisms necessary for learning or with 

proper brain development. Pristine® may interfere with nutrient transport in honey bees, 

as it impairs protein digestion (DeGrandi-Hoffman et al., 2015), and one of its active 

ingredients (pyraclostrobin) damages the midgut epithelium (Tadei et al., 2020). If bees 

are stimulated with but not fed sugar during PER training, their memory consolidation is 

worse overall than when allowed to feed during training (Wright et al., 2007). 

Furthermore, feeding with a tasteless but nutritional sugar produces robust learning 

(Mustard et al., 2018). These results suggest that the rise in hemolymph glucose levels 

following sugar ingestion may provide a post-ingestive signal and help the bee form a 

robust memory of the association (Simcock et al., 2018). The exact physiological 

mechanisms underlying this post-ingestive feedback remain unknown; however, it is 

possible that the brain is able to sense either changes in hemolymph glucose levels or a 

rise in intracellular ATP levels (Simcock et al., 2018). If Pristine® interferes with nutrient 

absorption, it may block this post-ingestive feedback mechanism from promoting 

memory consolidation. Pristine® could also affect nutrient absorption during larval and 

pupal development, possibly impairing proper brain development. It has been well-

established that malnutrition during development can alter cognitive performance later in 

life in other animals, especially in rodents (Halas et al., 1979; Morgane et al., 1993; 
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Tonkiss & Galler, 1990). Relatively few studies have examined this phenomenon in 

honey bees, although two studies failed to find a link between nutrient deprivation at 

either the individual (Steijven et al., 2017) or colony (Mattila & Smith, 2008) level and 

impaired learning. Regardless, it is possible that Pristine® affects nutrient uptake and 

development in larvae, as both larval and adult exposure was necessary to cause 

significantly reduced learning in adults.  

 Alternatively, Pristine® could affect learning by directly poisoning mitochondria 

in the brain (Campbell et al., 2016). Although the degree to which Pristine® can pass 

through the gut and into the hemolymph remains unclear, it is plausible that some amount 

could reach the brain. Previous studies have used cytochrome oxidase activity as a proxy 

for cellular respiration in the bee brain; increased activity in the mushroom body calyces 

correlates with acquisition in the PER learning assay (Déglise et al., 2003). When the 

neonicotinoid insecticide imidacloprid is fed to bees, they show altered cytochrome 

oxidase activity in the mushroom body calyces, which correlates with impaired PER 

learning (Decourtye et al., 2004). Future studies are necessary to determine whether any 

amount of consumed Pristine® enters the bee brain. It will remain unclear whether 

Pristine® directly poisons mitochondria in the bee brain or whether its effects on 

associative learning result from more indirect causes, such as impaired nutrient 

absorption.  

CONCLUSION 

 My study shows that the fungicide Pristine® may not be entirely safe for 

pollinators. Along with its effects on learning, a variety of other negative effects have 

been reported, including disrupted nestmate recognition in solitary bees (Artz & Pitts-
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Singer, 2015), reduced queen emergence (DeGrandi-Hoffman et al., 2013), impaired 

protein digestion and increased virus titers (DeGrandi-Hoffman et al., 2015), precocious 

foraging, and reduced adult worker population (Fisher et al., 2021a). Future research 

should seek to determine whether additional behaviors are impaired, such as navigation 

and foraging ability. Further work is also necessary to determine the mechanisms 

underlying impaired learning, including whether Pristine® is directly affecting 

mitochondrial function in the brain or whether it is acting through more indirect 

mechanisms, such as impaired nutrient absorption. Additionally, due to the multitude of 

sublethal effects that have been reported across a variety of agrochemical classes, 

standard toxicity tests may need to be redesigned by stakeholders such as the United 

States EPA and USDA to take these into account (Barascou et al., 2021; Fisher, 2021). 

These results suggest that this commonly-used agrochemical may not be safe for honey 

bees, an important agricultural pollinator.  
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CHAPTER 3 

A MITOTOXIC FUNGICIDE ALTERS POST-INGESTIVE GLUCOSE SIGNALS 

NECESSARY FOR ASSOCIATIVE LEARNING IN HONEY BEES 

ABSTRACT 

 The Proboscis Extension Reflex (PER) paradigm trains honey bees to associate an 

odor with a sugar reward and is commonly used to assess impacts on associative learning 

after exposure to pesticides or other stressors. A rise in hemolymph glucose levels during 

PER training serves as a post-ingestive signal and is essential for the bee to form a robust 

memory of the association. Foraging honey bees are exposed to a wide variety of toxins 

in agricultural ecosystems. While the effects of some types of pesticides have been well-

investigated, relatively little attention has been focused on fungicides that are applied to 

flowering crops to control fungal infections. I have previously shown that the fungicide 

Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) impairs honey bee 

performance in an associative learning assay. Pristine® disrupts protein digestion, but the 

mechanism of its action has not been investigated. Here, I investigate Pristine®’s impacts 

on carbohydrate absorption by measuring hemolymph sugar levels post-feeding. 

Pristine®-exposed bees had elevated baseline glucose concentrations in the hemolymph 

relative to control bees. Hemolymph glucose levels rose significantly within five minutes 

of feeding in control bees, but not in Pristine®-fed bees. These data suggest that the post-

ingestive feedback mechanisms necessary for robust learning are disrupted in bees that 

have consumed this fungicide, providing a plausible mechanistic explanation for its 

effects on learning performance in the PER assay. Pristine®-exposed bees may have 

elevated hemolymph glucose levels because the fungicide damages the midgut, or 
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because it elicits an inflammatory response. These results are an important step forward 

in understanding the physiological effects of mitotoxic fungicides on this important 

pollinator.  

INTRODUCTION 

 Classical conditioning is the process by which an animal learns to associate an 

environmental stimulus with either a good (appetitive) or bad (aversive) biological 

outcome (Rescorla, 1988). Post-ingestive feedback is a mechanism underlying 

associative learning and, in a general sense, dictates how an animal’s body reacts to and 

learns about a particular food. Post-ingestive feedback mechanisms may be either 

appetitive or aversive, teaching an animal to either seek out or avoid the food in the 

future.  

 Honey bees can learn to associate the odors and tastes of toxins with the post-

ingestive consequences (malaise) of consuming them (Wright et al., 2010). On the 

appetitive side, some compounds naturally present in nectar can enhance a bee’s memory 

of the food source, making it more likely that the bee will seek out that source again later. 

These compounds include certain amino acids (Carlesso et al., 2021; Kim & Smith, 2000; 

Marchi et al., 2021), flavonoids (Gong et al., 2021; Hernández et al., 2019), and caffeine 

(Gong et al., 2021; Marchi et al., 2021; Wright et al., 2013). While substances like these 

are most well-known as deterrents to herbivory and are undoubtably toxic at high doses, 

the small concentrations found in nectar can actually enhance pollinators’ memory of the 

flower by making them feel good—likened to a “buzz” similar to how a human might 

feel after caffeine consumption (Vignieri, 2013).  
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 Appetitive post-ingestive feedback can be studied in the proboscis extension 

reflex (PER) conditioning paradigm. PER, a method of classical conditioning for honey 

bees and other insects, conditions bees to associate a neutral stimulus (usually an odor) 

with a sugar reward (Bitterman et al., 1983; Smith & Burden, 2014; Takeda, 1961). 

During the PER assay, bees are fed a small amount of a sucrose solution following each 

acquisition trial. A few such trials is usually sufficient for the bees to show good recall of 

that association 24 or more hours later. Bees that are allowed to taste but not feed on 

sucrose learn in the short term but do not remember the association between odor and 

reward 24 hours later (Wright et al., 2007), and conversely, feeding bees tasteless but 

metabolizable sugars mitigates this effect (Mustard et al., 2018). Sucrose is quickly 

digested into glucose and fructose and absorbed by honey bees, causing hemolymph 

glucose levels to rise. Rising hemolymph glucose levels within 5-10 minutes of feeding 

serve as a cue for the brain to reinforce the association between odor and reward 

(Simcock et al., 2018).  

 I have previously shown that a common agricultural fungicide, Pristine® (active 

ingredients: 25.2% boscalid, 12.8% pyraclostrobin), impairs honey bee olfactory 

associative learning performance in the PER paradigm (DesJardins et al., 2021). These 

two active ingredients interfere with components of respiration in fungal cells (boscalid 

targets succinate dehydrogenase and pyraclostrobin targets cytochrome bc1 at Qo site) 

(Fungicide Resistance Action Committee [FRAC], 2022), and inhibit mitochondrial 

activity in honey bees (Campbell et al., 2016). Additionally, pyraclostrobin damages the 

honey bee midgut (da Costa Domingues et al., 2020; Tadei et al., 2020) and the Pristine® 

formulation impairs protein absorption (DeGrandi-Hoffman et al., 2015). It is unknown 
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whether Pristine® also impacts carbohydrate absorption, but if it does, the post-feeding 

rise in hemolymph glucose levels necessary for robust memory formation in the PER 

paradigm may not be sufficient to support the formation of an associative memory. Here, 

I test this idea by measuring carbohydrate absorption in honey bees exposed to Pristine® 

by feeding them a set amount of sucrose and measuring their hemolymph sugar levels at 

known time points afterward. By doing so, I seek to determine the mechanism underlying 

this fungicide’s effects on associative learning and take another step towards 

understanding its impacts on honey bee health.   

METHODS 

 Honey bee colonies and fungicide exposure. Colony initiation and exposure 

protocols were the same as described in previous studies (DesJardins et al., 2021; Fisher 

et al., 2021). For these experiments, I obtained six 3 lb. Italian honey bee (Apis mellifera 

linguistica) packages from Pendell Apiaries in Stonyford, California in April 2021. The 

packages were used to initiate new colonies in Apimaye plastic hive boxes (Kaftan LLC, 

Tempe, AZ) at the Arizona State University Bee Lab in Mesa, AZ (33.293173, 

−111.684520).  

 In September 2021, pollen traps were placed on hive entrances to limit the amount 

of outside pollen that foragers were able to bring in. A random number generator 

(random.org) was used to assign three hives to the fungicide treatment group and three 

hives to the control group. Pollen patties containing either plain deionized water (control) 

or deionized water mixed with 23 ppm Pristine® (treatment group) (BASF Corporation, 

Research Triangle Park, NC) were placed inside the hive ad libitum starting at the 

beginning of September 2021 and ending in December 2021, after bee hemolymph 
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collection was finished. I chose 23 ppm Pristine® as my focal concentration because bees 

could realistically be exposed to that amount while foraging in a treated almond orchard 

(Fisher et al., 2021), and this concentration also impairs associative learning performance 

in the laboratory (DesJardins et al., 2021).  

 Bee feeding and hemolymph collection. In November and December 2021, bees 

were captured from hives entrances, either Pristine®-fed or controls. They were taken 

inside, anesthetized on ice, and then harnessed so that only their antennae and mouthparts 

were moveable, just as they would be for the PER assay (DesJardins et al., 2021; Smith 

& Burden, 2014). To control for any effect of time since last feeding, bees were fed and 

then subjected to an overnight starvation procedure. Each bee was fed 30 µL of a 1.0 M 

table sugar and water solution using a 0.2 mL Gilmont syringe (Cole-Parmer, Vernon 

Hills, IL). I chose table sugar and this concentration because it matches standard PER 

procedures (DesJardins et al., 2021; Smith & Burden, 2014). Most bees consumed the 

full 30 µL, but if a bee consumed less than that, a note of the amount consumed was 

recorded. After feeding, bees were placed in a plastic box with damp paper towels at the 

bottom to provide humidity, which was then placed in a dark cabinet overnight.  

 The following day, bees were randomly assigned to one of six time points: 0, 0.5, 

1, 3, 5, or 10 minutes post-feeding, chosen to mimic the procedures of Simcock et al. 

(2018). Bees in the “zero minutes” treatment group were not fed; their hemolymph was 

collected immediately. Bees in the other five treatment groups were fed 30 µL of the 

sugar water solution, and their hemolymph was collected at the time post-feeding 

corresponding with their treatment group.  
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 To collect hemolymph, as in Simcock et al. (2018), a small incision was made 

above the median ocellus. A 1 µL microcapillary tube (Drummond Scientific, Broomall, 

PA) was inserted into the incision, and was left there until it was completely full. Its 

contents were then diluted in 300 µL deionized water and emptied into a microcentrifuge 

tube, which was immediately placed in a -80°C freezer. If the bee refused the sugar water 

or 1 µL hemolymph could not be obtained, it was excluded.  

 Glucose assays. I used a glucose oxidase colorimetric assay kit (GAGO20, 

Sigma-Aldrich, St. Louis, MO) to determine the amount of glucose in the hemolymph 

samples. The kit was prepared according to its instructions, but the amounts of reagents 

added during each step of the assay were modified to accommodate the small volumes of 

my hemolymph samples. I created a glucose standard curve with standards containing 0, 

2, 4, 6, 8, and 10 percent glucose, which was run with each plate. R2 values for the 

standard curves ranged from 0.990 to 0.999. I added 33 µL of each diluted hemolymph 

sample (using 99 µL total) in triplicate to a 96-well plate. I added 66 µL of the glucose 

oxidase mix to each well, incubated for a half hour at 37°C, and then added 66 µL of a 12 

N sulfuric acid solution to each well to stop the reaction. The plate was run through a 

microplate spectrophotometer (xMark™ Microplate Absorbance Spectrophotometer, Bio-

Rad Laboratories, Hercules, CA) at 540 nm, and then glucose amounts for each sample 

(averaged across the three wells) were calculated using the standard curve and adjusted 

based on the prior hemolymph dilution.  

 Trehalose assays. Trehalose was measured by adding another 33 µL of each 

diluted hemolymph sample in triplicate to a 96-well plate. One µL of the enzyme 

trehalase (T8778, Sigma-Aldrich, St. Louis, MO) was added to each well, and then the 
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plate was incubated overnight at 37°C (Wang et al., 2016). Preliminary experiments 

confirmed that this procedure broke down all the trehalose present in the sample into its 

component glucose, and that the trehalase enzyme did not lyse other disaccharides such 

as sucrose. Each sample was then run through another round of the glucose assay, and the 

difference in glucose between the first and second runs was used to determine the amount 

of trehalose in the sample.  

 Statistical analyses. Data were analyzed in R version 4.2.2 (R Core Team, 2022). 

Linear models were created to analyze the results for glucose and trehalose separately, 

looking for effects of time post-feeding, treatment group, and the interaction between the 

two on hemolymph sugar concentrations. For the glucose assay, post hoc pairwise 

comparisons were conducted using t-tests with Bonferroni-corrected p-values to 

determine which time points were significantly different from time point zero within each 

treatment group. Because five t-tests were performed for each treatment group, α was set 

to 0.01.  

RESULTS 

 Hemolymph glucose concentrations. In the control group, average hemolymph 

glucose concentrations started relatively low (2.50 µg/µL) and rose steadily, reaching 

8.13 µg/µL three minutes post-feeding. In the Pristine® group, average hemolymph 

glucose concentrations were higher than controls at time point zero (7.14 µg/µL), and 

there were apparently larger peaks at both 30 seconds (14.4 µg/µL) and five minutes 

(15.6 µg/µL) post-feeding, but there was no systematic pattern in hemolymph glucose 

concentrations over time.  
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 Exposure to 23 ppm Pristine® significantly increased the concentration of glucose 

present in honey bee hemolymph on average across all time points relative to controls 

(F=12.8, p<0.001, Figure 3.1). In all but two intermediate time points, bees from the 

Pristine® treatment group had markedly higher concentrations of hemolymph glucose 

than controls. Hemolymph glucose levels also increased across post-feeding time points 

in control bees (F=4.523, p=0.0354). Based on post hoc comparisons, hemolymph 

concentrations were significantly different from time point zero at one (t=2.8353, p= 

0.008079), five (t=3.6095, p=0.001644), and ten (t=4.0174, p=0.0003823) minutes post-

feeding. However, hemolymph glucose levels did not change linearly with time in 

Pristine®-fed bees (F=2.53, p=0.114), and glucose levels did not differ significantly from 

those measured prior to feeding at any time after feeding according to post hoc tests.  

 

Figure 3.1. Average hemolymph glucose concentrations for bees exposed to Pristine® 

fungicide (orange) or for unexposed control bees (gray) at set times after consuming 30 

µL of a 1.0 M sucrose-water solution. Asterisks indicate time points that were 

significantly different from time point zero for that treatment group. Error bars indicate 

standard error. N=17-26 individuals per time point/treatment group.  
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 Hemolymph trehalose concentrations. Pristine® consumption had no 

statistically significant effect on honey bee hemolymph trehalose concentrations 

(F=0.350, p=0.852, Figure 3.2). Trehalose concentrations did not vary across post-

feeding time points (F=0.0199, p=0.888), staying within the range of 10-17 µg/µL, even 

in bees that had not been fed (time point zero). The interaction between time post-feeding 

and treatment group was also nonsignificant (F=0.0579, p=0.810).  

 

Figure 3.2. Average hemolymph trehalose concentrations for bees exposed to Pristine® 

fungicide (orange) or for unexposed control bees (gray) at set times after consuming 30 

µL of a 1.0 M sucrose-water solution. Error bars indicate standard error. N=14-23 

individuals per time point/treatment group.  

 

DISCUSSION 

 My results support the hypothesis that disrupted glucose absorption could account 

for why Pristine® reduces the learning abilities of honey bees. Pristine® consumption 

through larval and adult development reduces associative learning in a dose-dependent 
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manner, with significant effects observed at field-relevant concentrations (DesJardins et 

al., 2021). Because the results of PER assays can be predictive of effects on real-world 

foraging behaviors (Cabirol et al., 2018; Gerber et al., 1996), it is important to understand 

the mechanisms through which agrochemicals impact the critical abilities of bees to learn 

about food sources in their environments. Here, I present data showing that Pristine® 

impacts carbohydrate absorption, possibly interfering with the post-ingestive feedback 

mechanisms necessary for learning. Simcock et al. (2018) demonstrated that a rise in 

hemolymph glucose levels within five minutes of feeding was necessary for bees to form 

robust memories of the association between odor and sugar reward. I found that this rise 

happened in control but not Pristine® bees, likely because Pristine® bees had 

exceptionally high hemolymph glucose levels across most time points post-feeding, 

including at time point zero (which represented bees that had not been fed).  

 I also observed that average hemolymph trehalose concentrations haphazardly 

ranged from 10-17 µg/µL across all time points and treatment groups, with no significant 

differences over time or between treatments. Other studies have reported similar 

concentrations (Blatt & Roces, 2001; Woodring et al., 1993) and have confirmed that 

these concentrations remain relatively consistent within the first 20 minutes after feeding 

(Simcock et al., 2018). I conclude that the alterations in hemolymph glucose 

concentrations do not translate to differences in trehalose, suggesting that Pristine®-

exposed bees are still able to regulate storage of hemolymph sugars over time.  

 The PER paradigm mimics the process through which bees learn about which 

flowers provide the best sources of nutrients. To understand the post-ingestive feedback 

mechanisms at play during PER learning, it is important to understand how nectar is 
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digested and absorbed. Nectar consists of mostly sucrose, with smaller concentrations of 

glucose and fructose (Wykes, 1952). As sucrose is consumed, it is rapidly converted to its 

constituent monosaccharides, glucose and fructose, in the crop (Oertel et al., 1951). 

Although some studies report that sucrose can be present in the hemolymph after bees 

have fed on large amounts of sucrose (Bounias & Morgan, 1984; Simcock et al., 2018), it 

is generally accepted that sucrose is mainly broken down entirely within the gut, and that 

glucose, fructose, and trehalose are the main sugars found in the hemolymph (Arslan et 

al., 1986; Woodring et al., 1993). Sugar absorption from the midgut into the hemolymph 

is entirely passive, and glucose levels in the hemolymph rise within five minutes of 

feeding (Crailsheim, 1988). Within another five minutes, the fat body converts most of 

the glucose into trehalose, which is the dominant hemolymph sugar in honey bees (Blatt 

& Roces, 2001; Gmeinbauer & Crailsheim, 1993).  

 During the PER assay, bees fed with sucrose or glucose form robust long-term 

memories of the association between odor and reward, while bees fed with fructose do 

not. This suggests that a rise in hemolymph glucose levels is the driving force behind 

post-ingestive feedback (Simcock et al., 2018). The change in glucose levels in the brain 

could be detected by gustatory receptors expressed in neurons or glia that interact with 

the neurons that encode memories, reinforcing the association. Alternatively, the circuit 

involved in memory could sense rising intracellular ATP levels that are brought about by 

rising glucose levels (Simcock et al., 2018). If the rise in hemolymph glucose levels does 

not happen, perhaps because a fungicide is interfering with a bee’s ability to absorb 

nutrients, it follows that these post-ingestive processes would be disrupted and the bee 

would not learn as well.  
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 I observed that average hemolymph glucose concentrations rose to 8.13 µg/µL in 

control bees three minutes after feeding on 30 µL of a 1.0 M sucrose solution. This is 

consistent with most reports of hemolymph glucose concentrations soon after feeding 

(which usually peak somewhere between 5-10 µg/µL within five minutes) (Blatt & 

Roces, 2001; Crailsheim, 1988; Woodring et al., 1993), but falls short of the 150 mM 

(~27 µg/µL) peak reported by Simcock et al. (2018). The group of bees that consumed 

Pristine® had higher average hemolymph glucose concentrations than controls at every 

time point measured, with exceptionally large peaks at both 30 seconds (14.4 µg/µL) and 

five minutes (15.6 µg/µL) after feeding. However, these rises were non-significant when 

compared to hemolymph glucose concentrations in unfed (time point zero) Pristine® bees, 

which were also relatively high (7.14 µg/µL).  

 What could cause elevated hemolymph glucose levels in Pristine®-fed bees? In 

one study, pyraclostrobin, one of the active ingredients, caused a variety of changes to the 

morphology of honey bee midgut cells. These included increased epithelial cytoplasmic 

vacuolization, elimination of cells to the lumen, morphological alterations in regenerative 

cells, and reduced staining for neutral polysaccharides and glycoconjugates (da Costa 

Domingues et al., 2020). This damage to the midgut epithelia suggests that Pristine® (or 

pyraclostrobin, at least) compromises the midgut’s ability to properly absorb 

carbohydrates, may create a “leaky gut” where midgut contents are prematurely leaked 

into the hemolymph, potentially explaining elevated baseline glucose levels. Also, 

glucose transport by the midgut is likely to be at least partially paracellular, in 

conjunction with fluid transport driven by active ion reabsorption by the midgut epithelia, 

which could be inhibited by boscalid and pyraclostrobin (Campbell et al., 2016).   
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 Another potential explanation for increased hemolymph glucose levels Pristine® 

bees is that they could have greater immune system activity, either from the inflammation 

caused by gut damage or from the increase in virus titers associated with exposure 

(DeGrandi-Hoffman et al., 2015). Inflammation in insects infected with parasites has 

been linked to increased hemolymph sugar levels (Schilder & Marden, 2006; Xu et al., 

2015), including in Nosema-infected honey bees (Aliferis et al., 2012). Hemolymph sugar 

levels are not as responsive to insulin in infected insects compared to healthy controls. 

This response has been compared to mammalian metabolic syndrome (Schilder & 

Marden, 2006), which is also linked to increased inflammation.  

CONCLUSION 

 My study is the first to report that carbohydrate absorption in honey bees is 

impacted by the fungicide Pristine®, adding to reports that it damages the midgut (da 

Costa Domingues et al., 2020; Tadei et al., 2020), and interferes with protein digestion 

(DeGrandi-Hoffman et al., 2015). This fungicide’s effects on altered nutrient absorption 

are worth further study, and may ultimately relate to other observed effects such as 

reduced individual longevity,  increased pollen collection, and reduced population sizes 

of adult workers in colonies (Fisher et al., 2021). Although glucose levels in Pristine®-fed 

bees were higher than in control bees, which intuitively should support better memory, it 

may be the relative rise that triggers memory rather than the absolute levels. I found that 

hemolymph glucose levels rose after feeding in control but not Pristine® bees, which is 

consistent with the idea that these effects on nutrient absorption interfere with the post-

ingestive feedback mechanisms necessary for robust learning (Simcock et al., 2018). 

Associative learning is critical for successful foraging in honey bees; therefore, my 
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results take an important step forward in understanding how Pristine® impacts the health 

and behavior of this important pollinator.  
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CHAPTER 4 

SYNERGISTIC EFFECTS BETWEEN A FUNGICIDE AND HIGH TEMPERATURES 

ON FORAGING AND NAVIGATION BEHAVIORS IN HONEY BEES 

ABSTRACT 

 Interactions between environmental stressors may contribute significantly to 

ongoing pollinator declines. Here, I examined the interaction between the agricultural 

fungicide Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) and high 

temperatures on navigation behaviors in managed honey bees. I have previously shown 

that this fungicide impairs associative learning performance in a laboratory-based assay. 

Because of that, I hypothesized that it would impair navigation and foraging behaviors in 

the field as well. By timing the return of foragers released from a novel site one kilometer 

from their colony, I show that exposure to Pristine® at field-relevant levels reduced the 

probability of successful return to the colony, and this effect was exacerbated when 

paired with the high temperatures typical of an Arizona summer. Pristine® did not affect 

the masses of corbicular pollen or volumes of nectar or water brought back to the hive by 

returning foragers, and it did not affect the total ratio of nectar:pollen:water foragers in a 

colony. However, Pristine®-fed bees brought more concentrated nectar back to the hive, 

suggesting that the fungicide may raise sucrose response thresholds in foraging honey 

bees. My results show that this commonly-used fungicide can affect important foraging 

behaviors in honey bees under natural conditions, especially when paired with extreme 

temperatures. As agrochemical usage continues to increase, and particularly as heat 

waves become more common under climate change, it will become more important to 

manage the effects of interacting stressors to ensure pollinator health and food security.  
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INTRODUCTION 

 Global pollinator populations have been declining in recent years (Brown et al., 

2016; Goulson et al., 2015; Potts et al., 2010). In parallel, managed honey bee 

populations in the US and Europe are experiencing high rates of annual colony loss 

(Bruckner et al., 2023; Gray et al., 2022). These losses are important because honey bees 

and other animal pollinators contribute substantially to agricultural production. Bee-

pollinated crops constitute one third of the global human food supply (Khalifa et al., 

2021). In the US, animal pollinators are worth $14.2–23.8 billion annually (Chopra et al., 

2015). There is also evidence that certain US crops, including apples, cherries and 

blueberries, are already limited by lack of pollinator visitation (Reilly et al., 2020). Given 

the economic and societal importance of pollinators, it is essential to understand the 

causes of their population declines.  

 Among the likely causes of pollinator population declines are habitat loss and 

fragmentation, agrochemicals, pathogens, non-native species, and climate change (Potts 

et al., 2010). While environmental stressors are often studied in isolation, interactions 

between these stressors are likely. For example, poor nutrition can make bees more 

vulnerable to viruses (Dolezal et al., 2019), as can pesticide exposure (Mayack et al., 

2022). Of particular interest are interactions between pesticides and extreme 

temperatures, such as the heat waves that are expected to occur as a result of climate 

change. Neonicotinoids reduce bee ability to survive exceptionally warm or cold 

temperatures (Alburaki et al., 2023; Bester et al., 2023), with greater differences in gene 

expression found in bees exposed to both stressors as opposed to one or the other 

(Alburaki et al., 2023; Kim et al., 2022; Manzi et al., 2020). A recent study also found 
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that the neonicotinoid imidacloprid interacted with high temperatures to reduce the 

distances that bumble bees were able to fly in a tethered flight mill (Kenna et al., 2023).  

 Navigation and foraging are complex tasks for honey bees that require associative 

learning (Menzel et al., 2006). Honey bees are central place foragers, which means they 

need to navigate to floral resources outside the colony and bring nectar and pollen home 

(Bell, 1990). Successful navigation requires bees to learn about their surroundings using 

multiple sensory modalities (Buehlmann et al., 2020), integrating visual landmarks (Pahl 

et al., 2011), polarized light (Kobayashi et al., 2020), and optic flow (Si et al., 2003) cues 

to understand the direction and distance needed to travel in order to return to the hive. 

Odor learning also plays a role in navigation and foraging, as workers learn floral odors 

from their nestmates in the hive, which helps them locate and exploit the source later 

(Farina et al., 2007). Because navigation and foraging are complex tasks that involve 

associative learning, stressors such as high temperatures (Gérard et al., 2022a) and 

pesticides (Siviter et al., 2018) that impair associative learning may impact these critical 

behaviors as well.  

 Indeed, a number of studies have found that such stressors negatively affect 

navigation and foraging behaviors in honey bees. Neonicotinoids and other insecticides 

can reduce the frequency and increase the average duration of foraging trips (Barascou et 

al., 2022; Colin et al., 2021; Guez et al., 2005; Schneider et al., 2012), reduce the average 

age of first foraging (Colin et al., 2019; Shi et al., 2020), and alter the amount of pollen 

and nectar resources brought back to the hive (Prado et al., 2019). Neonicotinoids 

(Christen et al., 2021; Fischer et al., 2014; Henry et al., 2012; Tison et al., 2016), 

pyrethroids (Van Dame et al., 1995), and the herbicide glyphosate (Sol Balbuena et al., 
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2015) can also negatively impact the ability of bees to successfully return to the hive after 

foraging, and these homing failures can contribute to colony collapse over time (Henry et 

al., 2012). High temperatures can lead to reduced foraging activity in bumble bees 

(Gérard et al., 2022b) and can induce precocious foraging and reduce longevity in honey 

bees (Medina et al., 2018). No studies have experimentally investigated the synergistic 

effects of high temperature and pesticides on navigation and foraging in bees, although 

some have found that exposure to neonicotinoids during cold weather can reduce homing 

success (Henry et al., 2014; Monchanin et al., 2019).  

 I have previously shown that the fungicide Pristine® impairs olfactory associative 

learning performance in honey bees (DesJardins et al., 2021). I therefore hypothesized 

that it would negatively impact navigation and foraging behaviors, which depend on the 

bee’s learning ability. Pristine®’s  active ingredients are boscalid (25.2%) and 

pyraclostrobin (12.8%), both of which interfere with the election transport chain in fungal 

cellular respiration (Fungicide Resistance Action Committee [FRAC], 2022). I used a 

combination of manual methods and RFID tracking technology to test whether field-

relevant Pristine® exposure reduced homing success and the amounts of various types of 

resources collected by foragers. The homing experiments were conducted across a wide 

range of air temperatures, from approximately 20-40°C, enabling me to determine 

whether air temperature influenced any potential negative effect of Pristine® on the 

ability of honey bees to return to their hives.  
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METHODS 

 Honey bee colonies and fungicide exposure. Colony initiation and exposure 

protocols were similar to those described in previous studies (DesJardins et al., 2021; 

Fisher et al., 2021a). For the 2021 homing experiment, I obtained six 3 lb. Italian honey 

bee (Apis mellifera linguistica) packages from Pendell Apiaries in Stonyford, California 

in April. The packages were used to initiate new colonies in Apimaye plastic hive boxes 

(Kaftan LLC, Tempe, AZ) at the Arizona State University Bee Lab in Mesa, AZ 

(33.293173, −111.684520).  

 For the 2022 homing and foraging experiments, I took approximately 3 lb. of 

adult bees from the 2021 hives and paired them with new queen bees purchased from 

Pendell Apiaries. In April, the bees and new queen bees were used to initiate new 

colonies (with new frames and hive boxes). Since this procedure kept only adult bees 

from the initial 2021 colonies (which were also quickly replaced by emerging brood), it 

prevented the 2022 colonies from being influenced by any potentially leftover fungicide 

residues from the 2021 experiments.  

 For the 2021 experiments, fungicide exposure began in September. Pollen traps 

were placed on hive entrances to limit the amount of outside pollen that foragers were 

able to bring in. A random number generator (random.org) was used to assign three hives 

each to the fungicide treatment and control groups. Pollen patties containing either plain 

deionized water (control) or deionized water mixed with 23 ppm Pristine® (treatment 

group) (BASF Corporation, Research Triangle Park, NC) were placed inside the hive ad 

libitum. I chose 23 ppm Pristine® as the focal concentration because bees could 

realistically be exposed to that amount while foraging in a treated almond orchard (Fisher 
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et al., 2021a), and this concentration also impairs associative learning performance in the 

laboratory (DesJardins et al., 2021).  

 In 2022, fungicide exposure began in July. Hives were assigned to treatment 

groups and fed in the same manner as in 2021. Fungicide exposure continued until 

experiments concluded in October.  

 To ensure that all focal bees in my experiment would be of similar age, I 

completed an age-marking process similar to the one described in Fisher et al. (2021b), 

once in 2021 (late September) and twice in 2022 (early August and late September). 

Capped brood frames were removed from each hive and placed in separate wire cages in 

an incubator (34 °C, 90% relative humidity) overnight. The following day, newly-

emerged adults were marked on the mesonotum with a paint color corresponding to their 

date of emergence, and then they were returned to their hive of origin. This process was 

repeated until there were at least 550 marked bees in each hive. The homing and foraging 

experiments began after marked bees from all hives had begun foraging (approximately 

two weeks later).  

 2021 homing success. Marked foragers were collected in glass vials as they 

exited the hive. They were brought inside, anesthetized on ice, and then wood glue 

(Gorilla Glue, Cincinnati, OH) was used to attach a queen tag (Mann Lake Bee & Ag 

Supply, Hackensack, MN) with a unique color and number to their mesonotum. Workers 

were then placed back in their glass vials along with a piece of cotton soaked in a 1.0 M 

sucrose solution. They were allowed to feed ad libitum on the sucrose during the time 

between marking and their release (approximately 20 minutes).  
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 Bees were released from a location 1 km east of the ASU Bee Lab, as determined 

using the measurement tool in Google Maps. This distance was chosen because it was 

comparable to the distance honey bees would usually cover when foraging (Steffan-

Dewenter & Kuhn, 2003), and it has been used in other similar homing studies (Henry et 

al., 2012). The release site was located along Old Pecos Road, which runs through vacant 

ASU-owned property and is closed to vehicle traffic. This direction was chosen because, 

compared to other locations around the Bee Lab, it contained relatively few landmarks, 

which can influence results (Henry et al., 2014). Weather data (cloud cover, air 

temperature, wind speed, and wind direction) for the time of release were taken from a 

weather station at the Phoenix-Mesa Gateway Airport 

(https://www.wunderground.com/weather/KIWA), which was located approximately 2 

km from the release site. Bees were released by removing the caps from the glass vials, 

placing them on the ground, and allowing individuals to exit on their own. The vials were 

left open for five minutes, after which any remaining bees were considered unmotivated 

to fly and removed from the experiment.  

 The colony entrances were partially covered with mesh wire at all times, which 

slowed down returning foragers and made it easier for the observers to see their tag 

numbers. Observers watched the colony entrances starting when the bees were released 

and ending one hour later. The length of the observation period was chosen because 

previous studies suggested that the majority of bees to return would do so within the first 

hour (Henry et al., 2012). Observers noted the time that each marked bee landed at the 

colony entrance.  

https://www.wunderground.com/weather/KIWA
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 2022 homing success. The capture and marking process was the same as in 2021, 

except bees were marked with RFID tags (BEE-TAG mic3®Q1.6, microsensys GmbH, 

Erfurt, Germany) instead of queen tags. Each tag was assigned to a treatment group 

(fungicide or control) and hive using a specialized RFID device (iID®PENsolid UHFcc, 

microsensys GmbH). The release site and methods were the same as in 2021. Before each 

bout of the experiment, RFID readers (iID®science reader device AEB-03.C2D, 

microsensys GmbH) were installed at hive entrances. They remained installed for three 

hours following the release time. Whenever the readers were not installed on the hives, 

3D printed “sham” readers were present instead so that the entrance would always look 

the same to the bees. As bees returned, their tag IDs were recorded along with 

timestamps on a specialized system controller (iID®BEEcontroller, microsensys GmbH).  

 2022 forager resource collection. Forager sample collection occurred at the 

same time as both of the 2022 homing runs, but was not conducted in 2021. Weather was 

recorded using the same method as in the homing experiment. Marked foragers were 

captured in glass vials as they returned to the hive. They were brought inside and 

immediately euthanized in a mixture of ethanol and dry ice.  

 Bees were classified as pollen, nectar, or water foragers following a similar 

methodology to the one outlined in Prado et al. (2019). If the bee was carrying pollen, the 

pollen was scraped off using forceps and weighed on an analytical balance. The bee’s 

abdomen was cut off with dissecting scissors and its crop contents were collected using 2, 

5, and 10 µL microcapillary tubes (Drummond Scientific, Broomall, PA) to measure crop 

volume. The crop contents were then transferred to a BRIX refractometer (VLT032, V-

RESOURCING) in order to measure sugar concentration. If the sugar concentration was 



  96 

10 percent Brix or higher, the bee was counted as a nectar forager, otherwise, it was 

classified as a water forager (Prado et al., 2019).  

 Statistical analysis—navigation. Data were analyzed in R version 4.2.2 (R Core 

Team, 2022). I analyzed two dependent variables: whether the bee returned to the hive 

after it was released (which I refer to as probability of return) and the time it took 

successful bees to return. For both variables, I considered the effect of treatment group 

(Pristine® versus control), air temperature at the time of release, and hive. I analyzed the 

two years separately as well as combined (with year as a fixed effect in the combined 

models); I report both results here.  

 To evaluate the probability that bees successfully returned to the hive, I ran 

generalized linear mixed models (logit link function, binomial family) using the lme4 

package (Bates et al., 2015). For the model that combined the two years, I first tested for 

a three-way interaction between treatment, temperature, and year, as well as for effects of 

all those variables separately. Hive was included as a random effect. I then dropped non-

significant interactions and re-ran the model. For the models that analyzed the years 

separately, I tested for an interaction between treatment and temperature, as well as 

effects of each variable separately.  

 To evaluate the time it took bees to return to the hive, I ran mixed effects Cox 

models using the coxme package (Therneau, 2022). The procedure was the same as 

described above for the probability of return GLMMs. I included hive as a random effect 

and tested for three-way interactions between treatment, temperature, and year in the 

combined model. In the models for each separate year, I tested for interactions between 

treatment and temperature.  
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 Statistical analysis—foraging. Data were analyzed in R version 4.2.2 (R Core 

Team, 2022). T-tests were performed using the t.test() function to analyze the differences 

in corbicular pollen mass, nectar forager crop volume, water forager crop volume, and 

nectar forager crop sugar concentration between treatment groups and runs. Pearson’s 

chi-squared tests were performed using the chisq.test() function to analyze the difference 

in proportions of foragers carrying different resource types (water, nectar, pollen, or 

nothing) between treatment groups and runs.  

RESULTS  

 Navigation—probability of return. The model that combined years produced 

statistically significant effects of treatment (χ2=5.82, p=0.0158), temperature (χ2=17.0, 

p<0.001), and the interaction between year and temperature (χ2=6.87, p=0.00878). In 

2021, neither treatment, temperature, nor the interaction between them produced a 

significant effect (Figure 1B). In 2022, treatment alone did not produce a significant 

effect, but temperature (χ2=19.6, p<0.001) and the interaction between treatment and 

temperature (χ2=4.62, p=0.0316, Figure 1E) did.   

 Navigation—time to return. The model that combined the years produced 

statistically significant effects of year (χ2=13.0, p<0.001) and the interaction between 

treatment and temperature (χ2=8.42, p=0.00372). In 2021, neither treatment, temperature, 

nor the interaction between them was significant, although the interaction produced a p-

value very close to the significance threshold (χ2=3.64, p=0.0565, Figure 1C). In 2022, 

neither treatment nor temperature produced a statistically significant effect on their own, 

but the interaction between the two was significant (χ2=4.63, p=0.0314).  
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Figure 4.1. Effects of Pristine® and air temperature on homing performance during 

experiments in 2021 (top row) and 2022 (bottom row). A. Cumulative percentage of bees 

that returned to the hive over time during 2021 experiments. B. Plot showing the potential 

interaction between air temperature and bee probability of return in 2021. In this case, the 

lines do not cross, indicating that there was no interaction between temperature and 

treatment group. C. Plot showing the potential interaction between temperature and the 

time it took bees to return in 2021. In this case, the lines do cross, indicating a likely 

interaction (Pristine® bees took longer to return to the hive at higher temperatures). D. 

Cumulative percentage of bees that returned to the hive over time during 2022 

experiments. E. Plot showing the interaction between temperature and probability of 

return in 2022. Lines cross, indicating an interaction (Pristine® bees were less likely to 

return to the hive at higher temperatures). The gray box represents the range of 

temperatures measured in 2021. F. Plot showing the interaction between temperature and 

time to return in 2022. Lines cross, indicating an interaction (Pristine® bees took longer to 

return to the hive at higher temperatures).  
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 Foraging—pollen, water, and nectar loads. Preliminary tests confirmed that 

hive had no significant effects on any of the parameters measured. Run (August versus 

October) had no significant effects on anything except for the sugar concentration of 

nectar forager crop contents (t=2.25, p=0.0287), with higher concentrations recorded in 

August (mean=44.5 percent, 95% CI=5.86 percent) compared to October (mean=36.8 

percent, 95% CI=3.76 percent).  

 Fungicide treatment had no significant effect on corbicular pollen mass (t=0.640, 

p=0.525) (Figure 2A), volume of nectar forager crop contents, (t=-0.474, p=0.637) 

(Figure 2B), or volume of water forager crop contents (t=-1.81, p=0.0792) (Figure 2C). 

Treatment did produce a significant effect on the sugar concentration of nectar forger 

crop contents (t=-2.31, p=0.0238) (Figure 2D), with higher concentrations recorded in the 

Pristine® group (mean=43.6 percent, 95% CI=4.80 percent) compared to the control 

group (mean=36.3 percent, 95% CI=4.35 percent).  

 Foraging—proportion of foragers collecting each resource type. Run (August 

versus October) had a significant effect on the proportion of foragers carrying nectar, 

water, pollen, or nothing (χ2=22.9, p<0.001), with more pollen foragers collected in 

October. Treatment group (Pristine® versus control) had no significant effect on the 

proportion of foragers carrying each resource type (χ2=0.420, p=0.936) (Figure 3). 
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Figure 4.2. Comparisons of nectar, pollen, and water amounts brought back to the hive 

between control and Pristine® treatment groups. Bars indicate means, while error bars 

indicate 95 percent confidence intervals. Asterisks denote significant differences between 

groups. A. Comparison of corbicular pollen masses between groups. B. Comparison of 

the volume of nectar forager crop contents between groups. C. Comparison of the volume 

of water forager crop contents between groups. D. Comparison of the sugar concentration 

of nectar forager crop contents between groups.  
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Figure 4.3. Proportions of foragers in both treatment groups devoted to each type of 

resource.  

 

 

DISCUSSION 

 In the navigation experiments, I found that Pristine® exposure reduced the 

probability that a bee would successfully return to the colony. Although fungicide 

treatment alone had no significant effect when the two years were analyzed separately 

(Figure 1A for 2021 and 1D for 2022), the model with combined years (with a larger 

sample size and more power) did show a significant effect. To my knowledge, this is the 

first study to show a direct effect of a fungicide on homing, a critical bee behavior. Aside 

from the herbicide glyphosate (Sol Balbuena et al., 2015), most of the compounds found 

to affect honey bee homing have been neuroactive insecticides (Christen et al., 2021; 

Fischer et al., 2014; Henry et al., 2012; Tison et al., 2016; Van Dame et al., 1995). My 
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study adds to a growing body of literature suggesting that Pristine® is not safe for honey 

bees (DeGrandi-Hoffman et al., 2015; DesJardins et al., 2021; Fisher et al., 2021a, b; 

Glass et al., 2021).  

 I also found that these homing failures were exacerbated when paired with the 

high temperatures typical of an Arizona summer. The model that measured probability of 

return with the two years combined showed a significant effect of temperature 

(suggesting that all bees, regardless of treatment group, were less likely to successfully 

return to the hive at higher temperatures), but did not show a significant interaction 

between treatment and temperature. There was a significant interaction between year and 

temperature, conveying the wider range of temperatures sampled in 2022 compared to 

2021. When the two years were analyzed separately, 2022 showed a significant 

interaction between fungicide treatment and temperature (Figure 1E), while 2021 did not 

(Figure 1B). Therefore, I conclude that this effect only becomes prevalent at temperatures 

above 32°C, which were sampled in 2022 but not 2021.  

 I also found that Pristine® interacted with high temperatures to increase the 

amount of time it took the bees to return. This effect was significant in the model with 

combined years and in the 2022 model (Figure 1F). The p-value for the interaction also 

closely approached significance in the 2021 model (Figure 1C). I conclude that the 

interactive effect between fungicide treatment and temperature on time to return was 

present in both years; therefore, this effect is prevalent even at lower temperatures.  

 The negative effects of this fungicide on homing abilities at high air temperatures 

are worrisome given current trends of climactic warming. Pristine® has been used 

extensively on almond trees in California. Although temperatures are unlikely to climb as 
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high as 32°C during the February almond bloom in California’s Central Valley in the 

near term (with average temperatures ranging from approximately 5-15°C and all-time 

highs at approximately 25°C) (National Weather Service [NWS], 2023), Pristine® is used 

on a variety of other honey bee-pollinated crops, some of which bloom in the summer. 

Normal summer temperatures usually peak around 30°C in the Central Valley, but heat 

waves can bring temperatures in excess of 40°C (NWS, 2023). The interaction between 

the two stressors is interesting and signifies that this fungicide is not completely 

innocuous. Especially as heat waves become more frequent in California and elsewhere 

as a result of climate change (Pathak et al., 2018), growers and regulators should exercise 

caution when deciding which agrochemicals are safe to use on blooming crops.  

 A handful of other studies have shown interactions between pesticides and 

temperature extremes. Neonicotinoids reduce bee ability to survive exceptionally warm 

or cold temperatures (Alburaki et al., 2023; Bester et al., 2023). A recent study also found 

that the neonicotinoid imidacloprid interacted with high temperatures to reduce the 

distances that bumble bees were able to fly in a tethered flight mill (Kenna et al., 2023). 

My study focused on homing success, but also required bees to fly one kilometer, a 

distance which may have been challenging for Pristine®-exposed bees, particularly at 

higher temperatures. No study to date has shown an interactive effect between high 

temperatures and pesticides on homing success specifically, although the neonicotinoid 

thiamethoxam can interact with low temperatures to exacerbate honey bee homing failure 

(Henry et al., 2014; Monchanin et al., 2019).  

 One possible mechanism underlying this interaction could involve an effect of the 

fungicide on energetic metabolism, causing exposed bees to tire more quickly than 
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controls, especially at high temperatures. Pristine® directly inhibits cellular respiration in 

isolated honey bee mitochondria (Campbell et al., 2016), and it also lowers ATP levels in 

honey bee flight muscles (DeGrandi-Hoffman et al., 2015). However, supporting 

evidence for this hypothesis is mixed, as some studies have reported no effects of 

Pristine® on carbon dioxide production and thorax temperatures during flight (Campbell 

et al., 2016). Glass et al. (2021) reported a negative effect of Pristine® on flight 

performance, but only when fed at 230 ppm, which is 10 times higher than the 

concentration used in my experiments.  

 Another possible mechanistic explanation for these homing results involves 

Pristine®’s effects on nutrient absorption. The active ingredient pyraclostrobin damages 

the honey bee midgut (da Costa Domingues et al., 2020; Tadei et al., 2020) and the 

formulation interferes with protein absorption (DeGrandi-Hoffman et al., 2015). These 

changes could potentially result in Pristine®-fed bees lacking the fuels necessary to 

sustain flight. Glass et al. (2021) also found that Pristine® bees had smaller thoraxes than 

controls, suggesting that flight muscles were not as well-developed in these bees.  

 A third possible explanation for the increase in homing failures is that bees could 

have reduced cognitive abilities as a result of exposure to Pristine®, high temperatures, or 

both. It is unknown whether Pristine® can pass through the gut and into the hemolymph, 

but it is plausible that it could poison mitochondria in the brain. This explanation goes 

along with my previous finding that Pristine® impairs olfactory associative learning 

performance (DesJardins et al., 2021), which provides a basic mechanism for measuring 

a bee’s ability to learn about relevant environmental stimuli, a necessary ability for 

successful homing. Likewise, short-term exposure to high temperatures can impair both 
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learning (Gérard et al., 2022a) and foraging (Gérard et al., 2022b) behaviors in bumble 

bees, although the underlying mechanisms remain unknown.  

 In the foraging experiments, foragers brought back similar masses of corbicular 

pollen and similar volumes of nectar and water regardless of Pristine® exposure, but 

foragers from the fungicide treatment group returned with more concentrated nectar than 

controls. Nectar was also more concentrated in August compared to October. I also 

observed different proportions of forager types in August compared to October, with 

more pollen foragers observed in October. However, I observed no differences between 

treatment groups. Interestingly, this differs from a previous study involving Pristine®, 

which found that the fungicide increased colony pollen collection and consumption 

(Fisher et al., 2021a). Overall, my results suggest that Pristine® does not significantly 

affect foraging efficiency, as Pristine® bees returned to their colonies with comparable 

amounts of nectar, pollen, and water and even greater concentrations of nectar when 

compared to controls.  

 The difference in sugar content of nectar is an interesting result, and is possibly 

suggestive of possible broader sensory effects of the fungicide. Sucrose response 

threshold is the lowest concentration of sucrose that will elicit proboscis extension (Page 

et al., 1998; Pankiw & Page, 1999, 2000). There is some precedence for fungicides 

affecting sucrose responsiveness in honey bees (Jiang et al., 2018). Bees with higher 

sucrose response thresholds may be more likely to return to the colony after foraging with 

higher concentrations of nectar (Page et al., 1998; Pankiw & Page, 1999), so it follows 

that perhaps Pristine®-exposed bees have higher sucrose response thresholds compared to 

controls. Despite this, a previous study found that sucrose responsiveness in a laboratory 
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assay was not affected by Pristine® consumption (DesJardins et al., 2021). However, 

sucrose responsiveness in laboratory assays does not always correlate with sucrose 

responsiveness in the field (Mujagic & Erber, 2009), so it is still possible that the 

fungicide could be affecting this critical sensory trait.  

 Another possible explanation for the difference in nectar concentrations between 

the two treatment groups could be that the Pristine® bees required more concentrated 

nectar to successfully return to the hive, and that the Pristine® bees carrying more dilute 

nectar concentrations died before returning. As discussed above, Pristine® has a variety of 

effects on nutrient absorption (da Costa Domingues et al., 2020; DeGrandi-Hoffman et 

al., 2015; Tadei et al., 2020), which may result in them lacking the necessary fuels to 

sustain flight. Bees carrying more concentrated nectar may have used it to fuel their own 

return flight to the colony.  

CONCLUSION 

 I found that the fungicide Pristine® reduced the proportion of bees that 

successfully returned to the colony during a homing test, and that this effect was 

exacerbated when paired with temperatures above 32°C. I found limited effects of the 

fungicide on foraging efficiency overall, although Pristine®-exposed bees returned with 

more concentrated nectar in their crops than controls. My results reinforce the idea that 

fungicides are not safe for pollinating insects (Cullen et al., 2019), even if they act via 

non-neurotoxic mechanisms. They also highlight the importance of testing for sublethal 

effects of agrochemicals in the field (Barascou et al., 2021), in part because important 

interactive effects become apparent, such as the interaction between Pristine® and high 

temperatures. Future studies should further examine the effects of Pristine® on behaviors 
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in the field; for example, Pristine® may still have effects on the frequency and/or duration 

of foraging trips performed by bees that consumed the fungicide.  
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CHAPTER 5 

CONCLUSIONS 

 My dissertation work investigated the effects of the fungicide formulation 

Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) on the behavior and 

physiology of honey bees. First, I found that Pristine® impaired associative learning 

performance in the Proboscis Extension Reflex (PER) assay (Chapter 2; DesJardins et al., 

2021). I found altered carbohydrate absorption in bees that had consumed Pristine®, 

suggesting that the fungicide’s negative effects on learning performance could be related 

to disrupted post-ingestive feedback mechanisms (Chapter 3). I found that Pristine® 

interacted with hot summer temperatures to reduce homing performance, as exposed bees 

were less likely to return to the hive than controls. I also found that Pristine® bees 

returned to the hive with more concentrated nectar than controls, again, possibly due to 

the fungicide’s effects on nutrient absorption (Chapter 4).  

 Via a literature review, I concluded that learning studies are useful proxies for 

assessing whether foraging and navigation behaviors in the field may be impaired in 

honey bees that have been exposed to toxins. However, lab learning studies that are 

paired with data from field foraging and navigation studies are more likely to influence 

policymakers and lead to changes in pesticide regulations (Chapter 1). I therefore paired 

my lab-based learning study with field-based foraging and navigation experiments, which 

demonstrated that Pristine® also produces negative effects on honey bee behaviors under 

natural field conditions.  

 My experiments contribute to a substantial body of literature that shows a variety 

of lethal and sublethal effects of Pristine® and its active ingredients on honey bees. 
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Pristine® inhibits honey bee mitochondrial function in vitro (Campbell et al., 2016). It 

reduces pollen consumption, protein absorption, and flight muscle ATP concentrations 

and increases virus titers (DeGrandi-Hoffman et al., 2015). In field colonies, it induces 

precocious foraging and reduces worker longevity, which leads to reduced adult worker 

populations and a lower probability of overwintering survival (Fisher et al., 2021). 

Pristine® also reduces thorax mass at field-relevant concentrations and flight performance 

at higher-than-field-relevant concentrations (Glass et al., 2021). Boscalid reduces 

wingbeat frequency during flight (Liao et al., 2019), and pyraclostrobin produces changes 

in midgut morphophysiology (da Costa Domingues et al., 2020; Tadei et al., 2020). Based 

on this relatively large body of evidence, I conclude that Pristine® degrades a number of 

critical bee behaviors, causing decreased colony fitness.   

 These results are significant, as Pristine® is registered for use on a variety of bee-

pollinated fruit, vegetable, and nut crops (BASF, 2022). Pristine® has been the focus of so 

much honey bee toxicology research because it has been used during bloom on almonds 

(Fisher et al., 2021), which depend very heavily on honey bees for pollination (Lee et al., 

2019; Reilly et al., 2020). Pristine® is also used on blueberries during bloom. A study 

conducted during blueberry pollination reported the active ingredients of Pristine in large 

proportions in corbicular pollen, wax, bee body, and flower samples (Graham et al., 

2022). The active ingredients of Pristine® have also been found in bee bread, honey, and 

wax samples in a number of other studies (Mullin et al., 2010; Ostiguy et al., 2019; 

Rondeau & Raine, 2022; Traynor et al., 2016, 2021).  

 Given that Pristine® can significantly affect the health and functioning of honey 

bee colonies, and that bees are likely to be exposed as they forage on treated crops, 
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should this fungicide be banned? There would be both benefits and drawbacks to this 

approach. If Pristine® continues to be used and colony losses increase as a result, 

beekeepers will face rising operational costs. This will drive up pollination fees (Baylis et 

al., 2021; Lee et al., 2019), therefore leading to increased costs for growers. This has 

already been happening to some degree; pollination fees have risen since Colony 

Collapse Disorder was first reported in 2006 (Baylis et al., 2021). However, growers 

would likely also face decreased yields (and revenue) if Pristine® was banned, as their 

crops would be more vulnerable to fungal diseases. Severe yield losses would lead to 

crop shortages, which would have negative implications for human nutrition and well-

being (Cooper & Dobson, 2007). Because of this, I do not recommend banning Pristine® 

outright; rather, I recommend that various stakeholders work together to ameliorate the 

negative effects and find alternatives.  

 Beekeepers and growers can both implement strategies to mitigate the effects of 

pesticides on pollinators. Growers can avoid spraying during bloom whenever possible, 

use more modern and efficient spraying technologies (allowing for less drift and more 

targeted applications), use lower doses (since many of the reported negative effects of 

Pristine® are dose-dependent), and implement Integrated Pest Management (IPM) 

strategies (Zhang et al., 2023). IPM strategies are especially promising—for example, 

one study focused on watermelon IPM resulted in dramatically decreased pesticide use 

and increased yields, which were attributed to increased pollinator visitation (Pecenka et 

al., 2021). Beekeepers can temporarily move hives away from areas that are being 

sprayed or block off entrances to stop foraging (Zhang et al., 2023). There are also 

promising dietary supplements that may be able to aid bees in detoxification—for 
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example, quercetin can mitigate some of boscalid’s negative effects (Liao et al., 2019). 

Beekeepers can also work to keep their hives as healthy as possible (well-nourished and 

disease-free), as other stressors can interact with agrochemicals to increase the chances of 

negative outcomes (Mayack et al., 2022).  

 Indeed, widespread agrochemical use is only one potential cause of pollinator 

decline, and it should not be considered in isolation. Other likely causes include 

agricultural intensification and habitat loss causing nutritional stress, parasites and 

pathogens, invasive species, and climate change (Brown et al., 2016; Dicks et al., 2021; 

Goulson et al., 2015; Insolia et al., 2022; Potts et al., 2010; Wagner, 2020). The world’s 

economic dependence on pollinators is significant (Chopra et al., 2015; Jordan et al., 

2021; Lippert et al., 2021), and although rising managed honey bee stocks have been able 

to keep up with demand so far (Baylis et al., 2021; Calderone, 2012), our global 

dependence on pollinators is increasing and may become unsustainable in the future 

(Aizen et al., 2019; Phiri et al., 2022). The impacts of pesticides and other stressors 

should also be more closely examined in wild bees, which contribute more than honey 

bees to pollination of certain crops (such as apples and cherries in the US) (Reilly et al., 

2020). Scientists should work more closely with growers and beekeepers to consider how 

all of these stressors interact in order to avoid further pollinator losses which could have 

catastrophic effects on food security and human health (Gallai et al., 2009; López-Uribe 

et al., 2020; Smith et al., 2022).  
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