Description
Building mathematical models and examining the compatibility of their theoretical predictions with empirical data are important for our understanding of evolution. The rapidly increasing amounts of genomic data on polymorphisms greatly motivate evolutionary biologists to find targets of positive selection.

Building mathematical models and examining the compatibility of their theoretical predictions with empirical data are important for our understanding of evolution. The rapidly increasing amounts of genomic data on polymorphisms greatly motivate evolutionary biologists to find targets of positive selection. Although intensive mathematical and statistical studies for characterizing signatures of positive selection have been conducted to identify targets of positive selection, relatively little is known about the effects of other evolutionary forces on signatures of positive selection. In this dissertation, I investigate the effects of various evolutionary factors, including purifying selection and population demography, on signatures of positive selection. Specifically, the effects on two highly used methods for detecting positive selection, one by Wright's Fst and its analogues and the other by footprints of genetic hitchhiking, are investigated. In Chapters 2 and 3, the effect of purifying selection on Fst is studied. The results show that purifying selection intensity greatly affects Fst by modulating allele frequencies across populations. The footprints of genetic hitchhiking in a geographically structured population are studied in Chapter 4. The results demonstrate that footprints of genetic hitchhiking are significantly influenced by geographic structure, which may help scientists to infer the origin and spread of the beneficial allele. In Chapter 5, the stochastic dynamics of a hitchhiking allele are studied using the diffusion process of genetic hitchhiking conditioned on the fixation of the beneficial allele. Explicit formulae for the conditioned two-locus diffusion process of genetic hitchhiking are derived and stochastic aspects of genetic hitchhiking are investigated. The results in this dissertation show that it is essential to model the interaction of neutral and selective forces for correct identification of the targets of positive selection.
Reuse Permissions
  • Downloads
    pdf (1.9 MB)

    Details

    Title
    • The effects of natural selection and random genetic drift in structured populations
    Contributors
    Date Created
    2011
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2011
      Note type
      thesis
    • Includes bibliographical references (p. 100-109)
      Note type
      bibliography
    • Field of study: Biology

    Citation and reuse

    Statement of Responsibility

    by Takahiro Maruki

    Machine-readable links